
Diagnosis for Interconnect Faults in Memory-based
Reconfigurable Logic Device

Xihong Zhou, Senling Wang, Yoshinobu Higami and Hiroshi Takahashi
Dept. of Computer Science, Ehime University

Matsuyama, Japan
g863003a@mails.cc.ehime-u.ac.jp

Abstract—The memory-based reconfigurable logic device
(MRLD) is a new type of logic reconfigurable device constructed
by general SRAM array in a special internal connection
structure that offers many advantages including the small delay,
low production cost and energy efficiency (low power), is thus
an alternative to edge computing for AI and IoT applications. In
order to guarantee the reliability of MRLD, this paper proposes
a diagnostic process to locate a single stuck-at fault on the
interconnect network of SRAM array of MRLD. The proposed
method creates fault propagation paths in row-direction and
column-direction through a pre-generated test set, and
determines the coordinate of the fault by observing the location
of the faulty value mapped on the outputs. Experimental results
with fault injection confirmed the effectiveness of the proposed
diagnostic method.

Keywords—reliability, reconfigurable device, interconnect
faults, fault diagnosis, memory-based reconfigurable logic device

I. INTRODUCTION
Nowadays, programmable logic device such as FPGAs

(Field Programmable Gate Arrays) is gaining increasing
attention for implementing the applications of AI (Artificial
Intelligence) and IoT (Internet of Things) systems. A
programmable logic device allows the developer/user to
edit/modify the hardware logic of functions in the field that
offers a flexible platform to implement the hardware
accelerator for the algorithm consists of large amount of
arithmetic operations such as deep neural networks (DNN) in
a rapid development cycle including the designing,
implementing and debugging [1][2].

MRLD [3] (Memory-based Reconfigurable Logic Device)
is a new type of programmable logic device which is under
development as an alternative edge computing device for
AI/IoT applications [4]. In contrast to FPGA which usually
consists of a very large programmable interconnect network
(switch matrix, programmable switch blocks) to realize the
programmability and a small array of configurable logic
blocks (CLBs), MRLD is constructed by an array of MLUTs
(Multiple Look-Up Tables) in a mesh connection structure
w/o any programmable interconnect resources as shown in
Figure 1 (a). In a MRLD device, MLUT (Multiple Look-Up
Table) is the basic reconfigurable element which consists of
four general SRAMs (see Figure 1 (b)) and are connected to
each other in mesh connection through m-bit address-inputs
and m-bit data-outputs called AD-pair interconnects. In such
a structure, each MLUT can work in either memory mode or
logic configuration mode. The logic function and wire function
can be directly configured into the MLUT by writing the
corresponding truth tables into the SRAMs. Hence, the large
amount of interconnect resources like in FPGA are not needed
anymore, it thus makes a highly density of reconfigurable
device with small delay and low power possible.

In order to improve the yield and guarantee the reliability
of MRLD device, extensive production tests with high quality
are required to detect the possible defects exist in the SRAMs
and in the AD-pair interconnects between MLUTs. The
former defects can be tested by conducting the existing test
technologies of SRAM memory [5][6]. For the latter, we have
analyzed the interconnect fault models including the stuck-at
faults and bridge faults at the AD-pair interconnects between
the MLUTs, and proposed the test approaches for detecting
the stuck-at fault and bridge fault, respectively in [7] and [8].

Beside the fault detection, fault diagnosis is also known to
play an important role in improving the yield and reliability of
products. In manufacturing, to diagnose the location of
interconnect fault in the MLUTs array is beneficial to
improving the process. When the MLRD is put in actual use
in the field, to locate the interconnect fault is helpful to avoid
configuring the logic into a faulty MLUT block for high
reliability. The fault diagnosis for locating the interconnect
fault in FPGA has been investigated deeply [9][10]. In [11] an
universal fault diagnosis technique is presented for locating
the interconnect fault in the Lookup Table array of a FPGA
device. The method can diagnose all faulty points in LUT
array through two steps: the horizontal diagnosis and the
vertical diagnosis. For MRLD constructed by a MLUTs array,
the basic idea presented in [11] is also available. However,
implementing the horizontal and vertical diagnosis in MRLD
must be considered carefully, because the interconnects
between MLUTs are un-reconfigurable.

In this paper, we proposed a diagnostic method to identify
the location of a stuck-at fault at the interconnect between
MLUTs. The proposed method is consisted with two phases.
The first phase creates fault propagation paths in row-
direction and column-direction through a pre-generated test
set including test cubes configured in MLUTs and patterns
applied in the external inputs. The second phase determines
the coordinate of the target interconnect fault by observing the
location of the faulty value in the external outputs of MRLD.
Main contribution of this paper is to address not only the fault
detection but also the fault diagnosis of MRLD. To evaluate the
method, we design an MRLD with 6×6 MLUTs array and
perform the logic simulation experiments by injecting the stuck-
at fault node to the netlist of the MRLD. The results confirmed
the effectiveness of the proposed diagnostic method which can
diagnose the location of the injected stuck-at fault.

This paper is organized as follows. Section II introduce the
architecture of the MRLD and then describe the stuck-at faults
model in MRLD. Section III propose a method for diagnosing the
location of the stuck-at interconnect faults of MLUTs in MRLD.
Section IV shows the experimental results for evaluating the
proposed diagnostic method of the stuck-at interconnect faults.
Section V concludes the paper.

11

II. STACK-AT INTERCONNECT FAULTS IN MRLD
In this section, we first introduce the MRLD architecture

and then describe the stuck-at interconnect faults in MRLD.

A. Structure of MRLD
MRLD consists of multiple general-purpose memory cells

(MLUTs: Multiple Look-Up Tables) arranged in an array. Figure
1 (a) shows the structure of an MRLD composed of 6×6 8-bit
(with 8 pairs of AD interconnects) MLUTs. Between the MLUTs,
address input lines and data output lines are bidirectionally
interconnected in pairs (called AD pairs). The address input lines
of each MLUT are connected to the data output lines of its
adjacent MLUTs. The address input line and data output line of
the outermost MLUT are connected to the IO (Input/Output) ports
of the MRLD device.

Figure 1 (b) shows the structure of a single 8-bit MLUT.
The MLUT consists of two asynchronous SRAMs (SRAM1,
SRAM2) and two synchronous SRAMs (SRAM3, SRAM4).
For the address input of the asynchronous SRAM and the
synchronous SRAM, the upper 4 bits and lower 4 bits of the
address input line of the MLUT are shared and used in order.
The address input of the synchronous SRAM is controlled by
the clock. Asynchronous SRAM address input executes
asynchronous operation by detecting the address change via ATD
(Address Transition Detector). The data output line of the SRAM
is connected to the OR gate. In addition, a 8-bit ORC (Output-
Control-Register) controls the data output line of the MLUT
through an XOR gate.

In such architecture, each SRAM works as a single look-up
table (LUT), users can configure logics or wires in the LUT by
writing the corresponding truth tables in the SRAM of the
reconfigurable element MLUT. The Figure 2 shows an example
to configure a logic circuit in two MLUTs. The circuit has two

inputs a and b, two internal signal lines c and d, and an output e.
First, a logic partition is performed to divide the circuit into two
sub-logics. Then, determining the address input and data output
lines of the MLUTs in according to each sub-logic (e.g.: a→A0,
b→A1, c→D5 and d→D4), and computing the truth table of the
sub-logics. Finally, writing the truth tables in the SRAMs within
the MLUTs. It is worth to note that wires can be configured in
MLUTs as logic interconnects which can provide smaller delay
and lower power consuming than FPGA.

B. Stuck-at interconnect faults in MRLD
As described in subsection A, MLUTs are connected with

each other by AD-pair interconnects including the address
inputs and data outputs. The address inputs of a target MLUT
come from the data outputs of its neighbor MLUTs and will
access the look-up table stored in the target MLUT to generate
logic outputs. A defect at the AD-pair interconnect can cause
a change of the address data that would result in logical faults
in the configured circuit. Stuck-at faults are typical fault
models for wiring interconnects. If there is a short between the
ground (supply) and AD pair interconnect (address line or data
line), the value of address input (data output) of the MLUT
will be fixed at logic 0 (logic 1). Figure 3 shows an example
of the behavior of stuck-at fault of the AD-pair interconnects.
We call a stuck-at fault at an interconnect a stuck-at
interconnect fault. Suppose that we configure the circuit
shown in Figure 2 in MLUT1 and MLUT2, and a stuck-at-1
(sa-1) fault occurs at the AD-pair interconnect MLUT1_D5 →
MLUT2_A5. The address input A5 of MLUT2 will be fixed
at 1 that dominates the output of OR logic to 1 and blocks the
propagation of logic value generated by D4 of MLUT1 to
access the address A4 of MLUT2 to generate a logic OR
output at D0 of MLUT2.

In [7], we have proposed the testing method for detecting
stuck-at interconnect faults of MRLD. The testing strategy of
the method is to store the test data (call them Test Cubes) in
the SRAMs of MLUTs, and observe the change of logic
outputs of MRLD by applying the external logic inputs of
MRLD (call them External Patterns) and performing the logic
operation. It is an effective method for detecting whether a

D0
A0

A4

A5
D5

D4
D4
A4

D5
A5

A1
D1

A0
D0

MLUT2

MLUT1
A5
D5

D5
A5

Stuck-at-1

VDD

MLUT1_D5 MLUT2_A5 MLUT2_D0
0 0/1 MLUT2_D0/1
0 0/1 MLUT2_D0/1
1 1 1
1 1 1

Logic behavior of Stuck-at Fault

 Fig. 3. Stuck-at-1 interconnect fault of MLUT.

Top IO port: ti[9:0], to[9:0]
Le

ft
IO

 p
or

t:
li[

23
:0

],
lo

[2
3:

0]

R
ig

ht
 IO

 p
or

t:
ri[

23
:0

],
ro

[2
3:

0]

x0y0 x2y0

Bottom IO port: bi[9:0], bo[9:0]
x1y5

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2
A3
D3

D4

A2

A4

D2
D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

x4y0

x0y5

x5y5

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4

A2

A4

D2
D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4

A2

A4

D2
D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

x1y0

x2y5

x3y0

x4y5

x5y0

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2

(a) MRLD (MLUTs array).

SRAM1
16word×8bit

(Asynchronous)

SRAM2
16word×8bit

(Asynchronous)

SRAM3
16word×8bit
(Synchronous)

SRAM4
16word×8bit
(Synchronous)

Output Control Register

MLUT
8-bit

A0

A2

A3

A1
D0

D2

D3

D1

A7

A5

A4

A6
D7

D5

D4

D6

D0 D2 D3D1 D7D5D4 D6

D0 D2 D3D1 D7D5D4 D6

A7

A5

A4

A6

A0

A2

A3

A1

D0 D2 D3D1 D7D5D4 D6

D0 D2 D3D1 D7D5D4 D6
A0

A2

A3

A1

A7

A5

A4

A6

C0 C2 C3C1 C7C5C4 C6

(b) Structure of a single MLUT.

Fig. 1. MRLD structure.

D0
A0

A4

A5
D5

D4
D4
A4

D5
A5

A1
D1

A0
D0

MLUT2

MLUT1

a
b

c
d e

a→A0
b→A1 c→D5

d→D4
D5 of MLUT1→A5
D4 of MLUT1→A4

D0 of MLUT2→e

Truth Table of MLUT1
Address input Data output

A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 0 0 0 0
0 1 1 1 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0 0 0
1 0 1 1 0 0 1 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0
1 1 1 1 0 0 1 1 0 0 0 0

Address input Data output

A7 A6 A5 A4 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0 0 0 0 1
0 1 1 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 0 1
1 0 1 1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0 0 0 0 1

Truth Table of MLUT2

Logic Partition

 Fig. 2. Configure a logic circuit in two MLUTs.

12

fault exists in MRLD, but it cannot diagnose the location of
the fault. In this paper, we proposed the diagnostic method to
diagnose the location of the stuck-at interconnect faults of
MRLD.

III. FAULT DIGNOSIS FOR MRLD
In this section, we introduce the method to diagnose the

location of stuck-at interconnect faults of MLUTs in MRLD.
First, we introduce the diagnostic strategy. Then, we describe
the diagnostic process for stuck-at interconnect fault.

A. Diagnostic strategy
In MRLD, since the data output of an MLUT comes from

the contents of look-up tables stored in the SRAMs accessed
by the address inputs [Figure 4 (a)], a stuck-at (sa) fault at AD
pair interconnect can cause a change of the address that would
access the different contents of the look-up tables [Figure 4
(b)]. On the other hand, for the same of address input, the data
outputs vary according to the contents of look-up tables
accessed [Figure 4 (c)]. Therefore, for diagnosing the location
of a stuck-at fault at AD pair interconnect, a simple strategy is
to design the look-up tables which can propagate the fault to
the different output ports of MRLD in different paths. Then to
view the output ports and find the ports with fault output.
Finally to determine the fault location via computing the
intersection of propagation paths corresponding to different
ports with fault output.

Figure 5 shows an example of the diagnostic strategy
proposed. Here for ease of explanation, we use an MRLD
with 2×2 MLUTs array, and suppose a stuck-at fault at the
address input A5 of MLUT x1y1 (or the data output D5 of
MLUT x0y1). To diagnose the location of stuck-at fault at the
x1y1A5 (x0y1D5), we do diagnosis in row-direction and
column-direction, respectively. For row-direction diagnosis,
to configure the look-up tables into SRAMs of MLUTs,
making the stuck-at fault propagate to the output port of
MRLD in the row-direction. As shown in Figure 5 (a), when
an external pattern is applied to input ports of MRLD, the
li[6] (x0y1A2) will be faulted at x1y1A5 (x0y1D5) and then
the fault is propagated to the output port ro[4] (x1y1D2) of
MRLD. The stuck-at Fault Path in row-direction (rFPsa) can

be determined as rFPsa = {x0y1A2 (li[6]), x1y1A5 (x0y1D5),
x1y1D2 (ro[4])}. For column-direction diagnosis, to
configure the look-up tables into SRAMs of MLUTs, making
the stuck-at fault propagate to the output port of MRLD in the
column-direction. As shown in Figure 5 (b), when an external
pattern is applied to the input ports of MRLD, the ti[0]
(x0y0A6) also will be faulted at x1y1A5 (x0y1D5) and then
the stuck-at fault is propagated to the output port bo[0]
(x1y1D6) of MRLD. The stuck-at Fault Path in column-
direction (cFPsa) can be determined as cFPsa = {x0y0A6
(ti[0]), x1y0A5 (x0y0D5), x0y1A6 (x1y0D6), x1y1A5
(x0y1D5), x1y1D6 (bo[0])}. After diagnosing in the row-
direction and column-direction, respectively, as shown in
Figure 5 (c), the fault location can be determined out through
compute the intersection of rFPsa and cFPsa. i.e. x1y1A5
(x0y1D5) = rFPsa ∩ cFPsa.

The diagnostic strategy is as follows.
1) Row-direction diagnosis: Creating the stuack-at faults

propagation path in row-direction (rFPsa) as follws.
a) Writing Diagnostic Test Cubes: Configuring the

diagnostic test look-up tables in MLUTs for
exciting the fault propagation in row-direction.

b) Appliying External Patterns: Appliying external
pattern to input ports of MRLD.

c) Obtaining Fault Path: Determining the fault path
in row-direction via observing the output port with
fault port of MRLD.

2) Col-direction diagnosis: Creating the stuack-at faults
propagation path in col-direction (cFPsa) as follws.
a) Writing Diagnostic Test Cubes: Configuring the

diagnostic test look-up tables in MLUTs for
exciting the fault propagation in column-direction.

b) Appliying External Patterns: Appliying external
pattern to input ports of MRLD.

c) Obtaining Fault Path: Determining the fault path
in column-direction via observing the output port
with fault port of MRLD.

3) Determining fault location: Finding out stuak-at faults
location (LOCsa) through computing the intersection
of rFPsa and cFPsa: rFPsa ∩ cFPsa.

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A700000000

10000000…

******** 0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

(a) Data outputs come from the look-up table.

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A700000000

10000000…

********0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0Stuck-at 1

(b) Stuck-at fault affect data outputs.

Fig. 4. Stuck-at Fault change of the address to affect data outputs.

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A700000000

00001000…
********0

1

0
0

0
0

0
0

0
0

0
0

0
0

0
0Stuck-at 1

(c) Data outputs vary with the look-up table.

Top IO port: ti[1:0], to[1:0]

Le
ft

IO
 p

or
t:

li[
7:

0]
, l

o[
7:

0]

R
ig

ht
 IO

 p
or

t:
ri[

7:
0]

, r
o[

7:
0]

x0y0

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2
A3
D3

D4

A2

A4

D2
D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A4 D3
A3

A5
D5

D2

D4

A2

x1y0

Bottom IO port: bi[1:0], bo[1:0]
x1y1

x0y1
A6
D6

D1
A1

A7
D7

D0
A0

(a) Diagnosis in row-direction.

Top IO port: ti[1:0], to[1:0]

Le
ft

IO
 p

or
t:

li[
7:

0]
, l

o[
7:

0]

R
ig

ht
 IO

 p
or

t:
ri[

7:
0]

, r
o[

7:
0]

x0y0

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2
A3
D3

D4

A2

A4

D2
D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A4 D3
A3

A5
D5

D2

D4

A2

x1y0

Bottom IO port: bi[1:0], bo[1:0]
x1y1

x0y1
A6
D6

D1
A1

A7
D7

D0
A0

(b) Diagnosis column-direction.

Fig. 5. Diagnostic strategy

x1y1A5
(x0y1D5)

x1y1D2
(ro[4])

x0y1A2
(li[6])

x0y0A6
(ti[0])

x1y0A5
(x0y0D5)

x0y1A6
(x1y0D6)

x1y1A5
(x0y1D5)

x1y1D6
(bo[0])

(c) Determining fault location.

13

B. Diagnostic test generation for stuck-at interconnect faults
In this subsection, we describe concretely the diagnostic

test generation for stuck-at interconnect faults on the basis of
the diagnostic strategy proposed in subsection A.

For row-direction diagnosis, we propose the Diagnostic
Test Cubes in row-direction (rDTC). The rDTC consists of
two Cubes (Cube1 and Cube 2). The Cube 1 and the Cube 2
are written respectively into SRAM1 (or SRAM3) and SRAM2
(or SRAM4) for creating the path of fault propagation in row-
direction. When applying External Pattern all-zero to input
ports of MRLD, the stuck-at-1 (sa-1) fault will be propagated
to output port of MRLD in row-direction, thus the path for
stuck-at-1 fault in the row-direction (rFPsa1) will can be
obtained by observe the output ports of MRLD. When
applying External Pattern all-one to input ports of MRLD, the
stuck-at-0 (sa-0) fault will be propagated to output port of
MRLD in row-direction, thereby the path for stuck-at-0 fault
in the row-direction (rFPsa0) will can be obtained by observe
the output ports of MRLD. For an MLUT with m pairs of AD
interconnects A[m-1:0] and D[m-1:0], and constructed by
four 2m/2word×m-bit SRAMs including two asynchronous
SRAMs (SRAM1, SRAM2) and two synchronous SRAMs
(SRAM3, SRAM4). The diagnostic test generation in row-
direction for stuck-at (sa) fault is as follows.

Process 1: Diagnostic Test Generation in row-direction for sa
[rDTC]

Cube 1: For the SRAMs share the low-order address
inputs (A[m/2-1:0]) of MLUT, set contents of the
address lines A[m/2-1:0] to D[m-1:m/2]=A[0:m/2-1],
D[m/2-1:0]=all-zero.

Cube 2: For the SRAMs share the high-order address
inputs (A[m-1:m/2]) of MLUT, set contents of the
address lines A[m-1:m/2] to D[m-1:m/2]=all-zero,
D[m/2-1:0]=A[m/2:m-1]

[Test for sa-1 fault]
External Pattern: Apply pattern all-zero to the input ports.
Fault Path: The path (rFPsa1) that the output port is one.

[Test for sa-0 fault]
External Pattern: Apply pattern all-one to the input ports.
Fault Path: The path (rFPsa0) that the output port is zero.

Figure 6 shows an example of rDTC configured in an

MLUT with 8 pairs of AD interconnects. For each MLUT, we
write Cube1 and Cube2 in the asynchronous SRAM1 and
SRAM2, respectively. In the Cube1, the low 4-bit data outputs
[D3:D0] of all address are all-zero, the high 4-bit data outputs
[D7:D4] of each address are [A0:A3]. In the Cube2, the high
4-bit outputs [D7:D4] of all address are all-zero, the low 4-bit
outputs [D4:D0] of each address are [A4:A7]. Because that
the data outputs [D7:D0] of SRAM1 and SRAM2 are
connected by OR function as illustrated in Figure 1 (b), the

data outputs [D7:D0] of each MLUT are the values of address
inputs [A0:A7]. i.e. the address line Ak is connected to the data
output line D7-k for each MLUT, thus the construction of the
propagation path of the fault from the row direction is realized.

Similarly, for column-direction diagnosis, we designed the
Diagnostic Test Cubes in column-direction (cDTC). The
diagnostic test generation in column-direction for stuck-at
fault is as follows.

Process 2: Diagnostic Test Generation in col-direction for sa
[cDTC]

Cube 1: For the SRAMs share the low-order address
inputs (A[m/2-1:0]) of MLUT, set contents of the
address lines A[m/2-1:0] to D[m-1:m/2]=all-zero,
D[m/2-1:0]=A[0:m/2-1].

Cube 2: For the SRAMs share the high-order address
inputs (A[m-1:m/2]) of MLUT, set contents of the
address lines A[m-1:m/2] to D[m-1:m/2]=A[m/2:m-1],
D[m/2-1:0]=all-zero.

[Test for sa-1 fault]
External Pattern: Apply pattern all-zero to the input ports.
Fault Path: The path (cFPsa1) that the output port is one.

[Test for sa-0 fault]
External Pattern: Apply pattern all-one to the input ports.
Fault Path: The path (cFPsa0) that the output port is zero.

Figure 7 shows as an example of cDTC configured in an

MLUT with 8 pairs of AD interconnects. Where, the data
outputs [D7:D0] of all address are [0000A0A1A2A3] and
[A4A5A6A70000] for SRAM1 and SRAM2, respectively. i.e.
for each MLUT, the address line Ak in low 4-bit address
(k=0,1,2,3) is connected to the data output line D7-(k+4) and the
address line Ak in the high 4-bit address (k=4,5,6,7) is
connected to the data output line D7-(k-4), thus the propagation
path of the fault from the column direction is created.

Executing the process 1 and process 2, the paths (rFPsa
and cFPsa) of stuck-at fault in row-direction and column-
direction can be obtained. The location of stuck-at fault can be
determined by computing the intersection of rFPsa and cFPsa.
The whole diagnostic process for stuck-at fault is as follows.

Process 3: Determining fault location of stuck-at fault.
[Row Diagnosis]

Executing the process 1, obtaining the path of sa-1 fault
and sa-0 fault in row-direction (rFPsa1 and rFPsa0).

[Col Diagnosis]
Executing the process 2, obtaining the path of sa-1 fault
and sa-0 fault in column-direction (cFPsa1 and cFPsa0).

[Fault Location]
sa-1 fault location: LOCsa1 = rFPsa1 ∩ cFPsa1
sa-0 fault location: LOCsa0 = rFPsa0 ∩ cFPsa0

A0
D0

A1
D1
A2
D2
A3
D3

D7
A7

D6
A6
D5
A5
D4
A4

SRAM1

SRAM3

SRAM2

SRAM4

Cube1 Cube2
Address Data

A7A6A5A4D7D6D5D4D3D2D1D0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0
* * * * 0 0 0 0 * * * *
1 1 1 1 0 0 0 0 1 1 1 1

Address Data
A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0
* * * * * * * * 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0

Fig. 6. Diagnostic Test Cubes for row-direction.

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A0
D0

A1
D1
A2
D2
A3
D3

D7
A7

D6
A6
D5
A5
D4
A4

SRAM1

SRAM3

SRAM2

SRAM4

Cube1 Cube2
Address Data

A7A6A5A4D7D6D5D4D3D2D1D0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0
* * * * * * * * 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0

Address Data
A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0
* * * * 0 0 0 0 * * * *
1 1 1 1 0 0 0 0 1 1 1 1

Fig. 7. Diagnostic Test Cubes for column-direction.

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

14

Fig. 10. Simulation results of stuck-at-1 fault injection in row-direction diagnosis

Fig. 11. Simulation results of stuck-at-1 fault injection in column-direction diagnosis

Fig. 12. Simulation results of stuck-at-0 fault injection in row-direction diagnosis

Fig. 13. Simulation results of stuck-at-0 fault injection in column-direction diagnosis

Input ports:
All-zero

Output ports:
ro[6] = 1

Stuct-at-1 is injected
at x2y1A2 (x1y0D2)

Stuct-at-1 is injected
at x2y1A2 (x1y0D2)

Input ports:
All-zero

Output ports:
bo[14] = 1

Stuct-at-0 is injected
at x2y1A2 (x1y0D2)

Input ports:
All-one

Output ports:
ro[6] = 0

Stuct-at-0 is injected
at x2y1A2 (x1y0D2)

Input ports:
All-one

Output ports:
bo[14] = 0

D8
A7

SRAM1
256word 16bit
(Asynchronous)

A0

A2

A4

A7

A3

A5
A6

A1

SRAM3
256word 16bit
(Synchronous)

A0

A2

A4

A7

A3

A5
A6

A1

D
0

D
2

D
3

D
4

D
5

D
6

D
7

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
8

D
1

SRAM4
256word 16bit
(Synchronous)

A7

A5

A3

A0

A4

A2
A1

A6

D
0

D
2

D
3

D
4

D
5

D
6

D
7

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
8

D
1

D
0

D
2

D
3

D
4

D
5

D
6

D
7

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
8

D
1

SRAM2
256word 16bit
(Asynchronous)

A7

A5

A3

A0

A4

A2
A1

A6

D
0

D
2

D
3

D
4

D
5

D
6

D
7

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
8

D
1

Output Control Register

C
0

C
2

C
3

C
4

C
5

C
6

C
7

C
9

C
10

C
11

C
12

C
13

C
14

C
15

C
8

C
1

A0

A2

A4

A3

A5

A6

A1

D7

D0

D2

D4

D3

D5

D6

D1

A8

A15

A13

A11

A12

A10

A9

A14
D15

D13

D11

D12

D10

D9

D14

MLUT
16-bit

Fig. 9. The 16-bit MLUT.

Top IO port: ti[19:0], to[19:0]

Le
ft

IO
 p

or
t:

li[
47

:0
],

lo
[4

7:
0]

R
ig

ht
 IO

 p
or

t:
ri[

47
:0

],
ro

[4
7:

0]

x0y0 x2y0

Bottom IO port: bi[19:0], bo[19:0]
x1y5 x3y5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5
AD6
AD7

AD9

AD4

AD8

AD5
AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

x4y0

x0y5

x5y5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5
AD6
AD7

AD9

AD4

AD8

AD5
AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD13 AD2

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5
AD6
AD7

AD9

AD4

AD8

AD5
AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD13 AD2

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD12 AD3 AD12 AD3

x1y0

x2y5

x3y0

x4y5

x5y0

Fig. 8. MRLD with 6×6 16-bit MLUTs array.

15

IV. EXPERIMENTAL RESULTS
To evaluate the proposed diagnostic method, we designed

a MRLD with 36 MLUTs arranged in a 6×6 array as shown in
Figure 8. It consists of 48-bits IO ports at the left and right side,
20-bits IO ports at the top and bottom side of the array,
respectively. As shown in Figure 9, each MLUT has 16 pairs
of AD interconnects [A15:A0] and [D15:D0], and consists of
four 256word×16bit SRAMs including two asynchronous
SRAMs and two synchronous SRAMs, respectively.

To verify the capability of the fault diagnosis method, we
performed the logic simulation using ModelSim by injecting
the stuck-at fault (0 and 1) nodes to the netlist of MRLD, and
observe the logic value at the output ports (lo, ro, to, bo) of
MRLD. As process 3 described in section III, we performed
the logic simulation for the row-direction diagnosis and the
column-direction diagnosis, respectively.

Figure 10 shows the simulation results of stuck-at-1 fault
diagnosis in row-direction. We write the diagnostic test cubes
(rDTC) to in all MLUTs, and apply the external patterns all-
zero to the input ports (li, ri, ti, bi) of MRLD. When a stuck-
at-1 is injected into the address input A2 of MLUT x2y1 (data
output D2 of MULT x1y0), the output value of ro[6] is
changed to 1. The fault path in row-direction can be
determined as rPFsa1 = {x0y1A2 (li[10]), x1y0A13
(x0y1D13), x2y1A2 (x1y0D2), x3y0A13 (x2y1D13), x4y1A2
(x3y0D2), x5y0A13(x4y1D13), x5y0D2 (ro[6])}. Figure 11
shows the simulation results of stuck-at-1 fault diagnosis in
column-direction. We write the diagnostic test cubes (cDTC)
to in all MLUTs, and apply the external patterns all-zero to the
input ports, When a stuck-at-1 is injected into the address
input A2 of MLUT x2y1 (data output D2 of MULT x1y0), the
output value of bo[14] is changed to 1. The fault path in
column-direction can be determined as cPFsa1 =
{x2y0A2(ti[14]), x1y0A5 (x2y0D5), x2y1A2 (x1y0D2),
x1y1A5 (x2y1D5), x2y2A2 (x1y1D2), x1y2A5 (x2y2D5),
x2y3A2 (x1y2D2), x1y3A5 (x2y3D5), x2y4A2 (x1y3D2),
x1y4A5 (x2y4D5), x2y5A2 (x1y4D2), x1y5A5 (x2y5D5),
x1y5D2 (bo[14])}. The location of stuck-at-1 fault can be
determined by computing the intersection of rFPsa1 and
cFPsa1: LOCsa1 = rPFsa1 ∩ cPFsa1 = x2y1A2 (x1y0D2).

Figure 12 and Figure 13 shows the simulation results of
stuck-at-0 fault diagnosis in row-direction and column-
direction, respectively. we inject the stuck-at-0 fault at the
same location x2y1A2 (x1y0D2) as the stuck-at-1 fault. When
applying the external pattern all-one to the input ports of
MRLD, the output value of ro[6] and bo[14] is changed to 0
in the row-direction diagnosis and in the column-direction
diagnosis, respectively. The same fault path rPFsa0 and
cPFsa0 as the fault path of stuck-at-1 is determined. The
location of stuck-at-0 fault can be determined by computing
the intersection of rFPsa0 and cFPsa0: LOCsa0 = rPFsa0 ∩
cPFsa0 = x2y1A2 (x1y0D2).

V. CONCLUTIONS
In this paper, we introduced the MRLD which is a

promising alternative reconfigurable device for the next-
generation IoT/AI edge devices. To guarantee the reliability
of MRLD, we proposed a diagnostic method that can
determine the fault location in the MLUT array by computing
the intersection of the fault propagation paths in row-direction
and column-direction. Logic simulation with fault injection
fault confirmed the effectiveness of the proposed diagnostic
method that can diagnose all injected stuck-at fault.

In our future work, we will evaluate the effectivity of the
proposed diagnosis method for multiple stuck-at faults and
explore the diagnostic generation method for locating others
interconnect faults (such as open fault, bridge fault, etc.) in the
MRLD device.

ACKNOWLEDGMENT
This work was supported in part by KAKENHI (19K20234)

and the part of this study is supported by the TAIYO YUDEN
CO., LTD., and the TRL Co., Ltd.

REFERENCES
[1] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “DLAU: A

Scalable Deep Learning Accelerator Unit on FPGA,” IEEE Trans.
Comput. Des. Integr. Circuits Syst., vol. 36, no. 3, pp. 513–517, 2017,
doi: 10.1109/TCAD.2016.2587683.

[2] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “[DL] A survey of
FPGA-based neural network inference accelerators,” ACM Trans.
Reconfigurable Technol. Syst., vol. 12, no. 1, Apr. 2019, doi:
10.1145/3289185.

[3] TAIYO YUDEN CO., LTD., “MRLD,” Trademark 85735093, 2014.
[4] M. Sato, K. Sato, M. Katsu, and I. Shimizu, “Reconfigurable logic

device,” WO Patent WO2014163099A3, 2014.
[5] T. Q. Bui, L. D. Pham, H. M. Nguyen, V. T. Nguyen, T. C. Le, and T.

Hoang, “An Effective Architecture of Memory Built-In Self-Test for
Wide Range of SRAM,” in 2016 Int. Conf. Adv. Comput. Appl., pp.
121–124, 2016, doi: 10.1109/ACOMP.2016.026.

[6] A. Sharma and V. Ravi, “Built in self-test scheme for SRAM
memories,” in 2016 Int. Conf. Adv. Comput. Commun. Informatics, pp.
1266–1270, 2016, doi: 10.1109/ICACCI.2016.7732220.

[7] S. Wang, Y. Higami, H. Takahashi, M. Sato, M. Katsu, and S.
Sekiguchi, “Testing of Interconnect Defects in Memory Based
Reconfigurable Logic Device (MRLD),” in 2017 IEEE 26th Asian Test
Symp., pp. 17–22, 2017, doi: 10.1109/ATS.2017.16.

[8] S. Wang et al., “Test Method for the Bridge Interconnect Faults in
Memory Based Reconfigurable-Logic-Device(MRLD) Considering
the Place-and-Route,” in 2018 33th Int. Tech. Conf. Circuits/Systems,
Comput. Commun., 2018.

[9] W. K. Huang, X. T. Chen, and F. Lombardi, “On the diagnosis of
programmable interconnect systems: Theory and application,” in Proc.
14th VLSI Test Symp., pp. 204–209, 1996, doi:
10.1109/VTEST.1996.510859.

[10] D. Das and N. A. Touba, “A low cost approach for detecting, locating,
and avoiding interconnect faults in FPGA-based reconfigurable
systems,” in Proc. Twelfth Int. Conf. VLSI Des. (Cat. No.PR00013), pp.
266–269, 1999, doi: 10.1109/ICVD.1999.745159.

[11] T. Inoue, S. Miyazaki, and H. Fujiwara, “Universal fault diagnosis for
lookup table FPGAs,” IEEE Des. Test Comput., vol. 15, no. 1, pp. 39–
44, 1998, doi: 10.1109/54.655181.

16

