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Abstract—The memory-based reconfigurable logic device 
(MRLD) is a new type of logic reconfigurable device constructed 
by general SRAM array in a special internal connection 
structure that offers many advantages including the small delay, 
low production cost and energy efficiency (low power), is thus 
an alternative to edge computing for AI and IoT applications. In 
order to guarantee the reliability of MRLD, this paper proposes 
a diagnostic process to locate a single stuck-at fault on the 
interconnect network of SRAM array of MRLD. The proposed 
method creates fault propagation paths in row-direction and 
column-direction through a pre-generated test set, and 
determines the coordinate of the fault by observing the location 
of the faulty value mapped on the outputs. Experimental results 
with fault injection confirmed the effectiveness of the proposed 
diagnostic method. 

Keywords—reliability, reconfigurable device, interconnect 
faults, fault diagnosis, memory-based reconfigurable logic device 

I. INTRODUCTION 
Nowadays, programmable logic device such as FPGAs 

(Field Programmable Gate Arrays) is gaining increasing 
attention for implementing the applications of AI (Artificial 
Intelligence) and IoT (Internet of Things) systems. A 
programmable logic device allows the developer/user to 
edit/modify the hardware logic of functions in the field that 
offers a flexible platform to implement the hardware 
accelerator for the algorithm consists of large amount of 
arithmetic operations such as deep neural networks (DNN) in 
a rapid development cycle including the designing, 
implementing and debugging [1][2]. 

MRLD [3] (Memory-based Reconfigurable Logic Device) 
is a new type of programmable logic device which is under 
development as an alternative edge computing device for 
AI/IoT applications [4]. In contrast to FPGA which usually 
consists of a very large programmable interconnect network 
(switch matrix, programmable switch blocks) to realize the 
programmability and a small array of configurable logic 
blocks (CLBs), MRLD is constructed by an array of MLUTs 
(Multiple Look-Up Tables) in a mesh connection structure 
w/o any programmable interconnect resources as shown in 
Figure 1 (a). In a MRLD device, MLUT (Multiple Look-Up 
Table) is the basic reconfigurable element which consists of 
four general SRAMs (see Figure 1 (b)) and are connected to 
each other in mesh connection through m-bit address-inputs 
and m-bit data-outputs called AD-pair interconnects. In such 
a structure, each MLUT can work in either memory mode or 
logic configuration mode. The logic function and wire function 
can be directly configured into the MLUT by writing the 
corresponding truth tables into the SRAMs. Hence, the large 
amount of interconnect resources like in FPGA are not needed 
anymore, it thus makes a highly density of reconfigurable 
device with small delay and low power possible. 

In order to improve the yield and guarantee the reliability 
of MRLD device, extensive production tests with high quality 
are required to detect the possible defects exist in the SRAMs 
and in the AD-pair interconnects between MLUTs. The 
former defects can be tested by conducting the existing test 
technologies of SRAM memory [5][6]. For the latter, we have 
analyzed the interconnect fault models including the stuck-at 
faults and bridge faults at the AD-pair interconnects between 
the MLUTs, and proposed the test approaches for detecting 
the stuck-at fault and bridge fault, respectively in [7] and [8]. 

Beside the fault detection, fault diagnosis is also known to 
play an important role in improving the yield and reliability of 
products. In manufacturing, to diagnose the location of 
interconnect fault in the MLUTs array is beneficial to 
improving the  process. When the MLRD is put in actual use 
in the field, to locate the interconnect fault is helpful to avoid 
configuring the logic into a faulty MLUT block for high 
reliability. The fault diagnosis for locating the interconnect 
fault in FPGA has been investigated deeply [9][10]. In [11] an 
universal fault diagnosis technique is presented for locating 
the interconnect fault in the Lookup Table array of a FPGA 
device. The method can diagnose all faulty points in LUT 
array through two steps: the horizontal diagnosis and the 
vertical diagnosis. For MRLD constructed by a MLUTs array, 
the basic idea presented in [11] is also available. However, 
implementing the horizontal and vertical diagnosis in MRLD 
must be considered carefully, because the interconnects 
between MLUTs are un-reconfigurable. 

In this paper, we proposed a diagnostic method to identify 
the location of a stuck-at fault at the interconnect between 
MLUTs. The proposed method is consisted with two phases. 
The first phase creates fault propagation paths in row-
direction and column-direction through a pre-generated test 
set including test cubes configured in MLUTs and patterns 
applied in the external inputs. The second phase determines 
the coordinate of the target interconnect fault by observing the 
location of the faulty value in the external outputs of MRLD. 
Main contribution of this paper is to address not only the fault 
detection but also the fault diagnosis of MRLD. To evaluate the 
method, we design an MRLD with 6×6 MLUTs array and 
perform the logic simulation experiments by injecting the stuck-
at fault node to the netlist of the MRLD. The results confirmed 
the effectiveness of the proposed diagnostic method which can 
diagnose the location of the injected stuck-at fault. 

This paper is organized as follows. Section II introduce the 
architecture of the MRLD and then describe the stuck-at faults 
model in MRLD. Section III propose a method for diagnosing the 
location of the stuck-at interconnect faults of MLUTs in MRLD. 
Section IV shows the experimental results for evaluating the 
proposed diagnostic method of the stuck-at interconnect faults. 
Section V concludes the paper. 
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II.  STACK-AT INTERCONNECT FAULTS IN MRLD 
In this section, we first introduce the MRLD architecture 

and then describe the stuck-at interconnect faults in MRLD. 

A. Structure of MRLD 
MRLD consists of multiple general-purpose memory cells 

(MLUTs: Multiple Look-Up Tables) arranged in an array. Figure 
1 (a) shows the structure of an MRLD composed of 6×6 8-bit 
(with 8 pairs of AD interconnects) MLUTs. Between the MLUTs, 
address input lines and data output lines are bidirectionally 
interconnected in pairs (called AD pairs). The address input lines 
of each MLUT are connected to the data output lines of its 
adjacent MLUTs. The address input line and data output line of 
the outermost MLUT are connected to the IO (Input/Output) ports 
of the MRLD device. 

Figure 1 (b) shows the structure of a single 8-bit MLUT. 
The MLUT consists of two asynchronous SRAMs (SRAM1, 
SRAM2) and two synchronous SRAMs (SRAM3, SRAM4). 
For the address input of the asynchronous SRAM and the 
synchronous SRAM, the upper 4 bits and lower 4 bits of the 
address input line of the MLUT are shared and used in order. 
The address input of the synchronous SRAM is controlled by 
the clock. Asynchronous SRAM address input executes 
asynchronous operation by detecting the address change via ATD 
(Address Transition Detector). The data output line of the SRAM 
is connected to the OR gate. In addition, a 8-bit ORC (Output-
Control-Register) controls the data output line of the MLUT 
through an XOR gate. 

In such architecture, each SRAM works as a single look-up 
table (LUT), users can configure logics or wires in the LUT by 
writing the corresponding truth tables in the SRAM of the 
reconfigurable element MLUT. The Figure 2 shows an example 
to configure a logic circuit in two MLUTs. The circuit has two 

inputs a and b, two internal signal lines c and d, and an output e. 
First, a logic partition is performed to divide the circuit into two 
sub-logics. Then, determining the address input and data output 
lines of the MLUTs in according to each sub-logic (e.g.: a→A0, 
b→A1, c→D5 and d→D4), and computing the truth table of the 
sub-logics. Finally, writing the truth tables in the SRAMs within 
the MLUTs. It is worth to note that wires can be configured in 
MLUTs as logic interconnects which can provide smaller delay 
and lower power consuming than FPGA. 

B. Stuck-at interconnect  faults in MRLD 
As described in subsection A, MLUTs are connected with 

each other by AD-pair interconnects including the address 
inputs and data outputs. The address inputs of a target MLUT 
come from the data outputs of its neighbor MLUTs and will 
access the look-up table stored in the target MLUT to generate 
logic outputs. A defect at the AD-pair interconnect can cause 
a change of the address data that would result in logical faults 
in the configured circuit. Stuck-at faults are typical fault 
models for wiring interconnects. If there is a short between the 
ground (supply) and AD pair interconnect (address line or data 
line), the value of address input (data output) of the MLUT 
will be fixed at logic 0 (logic 1). Figure 3 shows an example 
of the behavior of stuck-at fault of the AD-pair interconnects. 
We call a stuck-at fault at an interconnect a stuck-at 
interconnect fault. Suppose that we configure the circuit 
shown in Figure 2 in MLUT1 and MLUT2, and a stuck-at-1 
(sa-1) fault occurs at the AD-pair interconnect MLUT1_D5 → 
MLUT2_A5. The address input A5 of MLUT2 will be fixed 
at 1 that dominates the output of OR logic to 1 and blocks the 
propagation of logic value generated by D4 of MLUT1 to 
access the address A4 of MLUT2 to generate a logic OR 
output at D0 of MLUT2. 

In [7], we have proposed the testing method for detecting 
stuck-at interconnect faults of MRLD. The testing strategy of 
the method is to store the test data (call them Test Cubes) in 
the SRAMs of MLUTs, and observe the change of logic 
outputs of MRLD by applying the external logic inputs of 
MRLD (call them External Patterns) and performing the logic 
operation. It is an effective method for detecting whether a 
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 Fig. 3. Stuck-at-1 interconnect fault of MLUT. 
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(a) MRLD (MLUTs array). 
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(b) Structure of a single MLUT. 

Fig. 1. MRLD structure. 
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fault exists in MRLD, but it cannot diagnose the location of 
the fault. In this paper, we proposed the diagnostic method to 
diagnose the location of the stuck-at interconnect faults of 
MRLD. 

III. FAULT DIGNOSIS FOR MRLD 
In this section, we introduce the method to diagnose the 

location of stuck-at interconnect faults of MLUTs in MRLD. 
First, we introduce the diagnostic strategy. Then, we describe 
the diagnostic process for stuck-at interconnect fault. 

A.  Diagnostic strategy 
In MRLD, since the data output of an MLUT comes from 

the contents of look-up tables stored in the SRAMs accessed 
by the address inputs [Figure 4 (a)], a stuck-at (sa) fault at AD 
pair interconnect can cause a change of the address that would 
access the different contents of the look-up tables [Figure 4 
(b)]. On the other hand, for the same of address input, the data 
outputs vary according to the contents of look-up tables 
accessed [Figure 4 (c)]. Therefore, for diagnosing the location 
of a stuck-at fault at AD pair interconnect, a simple strategy is 
to design the look-up tables which can propagate the fault to 
the different output ports of MRLD in different paths. Then to 
view the output ports and find the ports with fault output. 
Finally to determine the fault location via computing the 
intersection of propagation paths corresponding to different 
ports with fault output. 

Figure 5 shows an example of the diagnostic strategy 
proposed. Here for ease of explanation, we use an MRLD 
with 2×2 MLUTs array, and suppose a stuck-at fault at the 
address input A5 of MLUT x1y1 (or the data output D5 of 
MLUT x0y1). To diagnose the location of stuck-at fault at the 
x1y1A5 (x0y1D5), we do diagnosis in row-direction and 
column-direction, respectively. For row-direction diagnosis, 
to configure the look-up tables into SRAMs of MLUTs, 
making the stuck-at fault propagate to the output port of 
MRLD in the row-direction. As shown in Figure 5 (a), when 
an external pattern is applied to input ports of MRLD, the 
li[6] (x0y1A2) will be faulted at x1y1A5 (x0y1D5) and then 
the fault is propagated to the output port ro[4] (x1y1D2) of 
MRLD. The stuck-at Fault Path in row-direction (rFPsa) can 

be determined as rFPsa = {x0y1A2 (li[6]), x1y1A5 (x0y1D5), 
x1y1D2 (ro[4])}. For column-direction diagnosis, to 
configure the look-up tables into SRAMs of MLUTs, making 
the stuck-at fault propagate to the output port of MRLD in the 
column-direction. As shown in Figure 5 (b), when an external 
pattern is applied to the input ports of MRLD, the ti[0] 
(x0y0A6) also will be faulted at x1y1A5 (x0y1D5) and then 
the stuck-at fault is propagated to the output port bo[0] 
(x1y1D6) of MRLD. The stuck-at Fault Path in column-
direction (cFPsa) can be determined as cFPsa = {x0y0A6 
(ti[0]), x1y0A5 (x0y0D5), x0y1A6 (x1y0D6), x1y1A5 
(x0y1D5), x1y1D6 (bo[0])}. After diagnosing in the row-
direction and column-direction, respectively, as shown in 
Figure 5 (c), the fault location can be determined out through 
compute the intersection of rFPsa and cFPsa. i.e. x1y1A5 
(x0y1D5) = rFPsa ∩ cFPsa. 

The diagnostic strategy is as follows. 
1) Row-direction diagnosis: Creating the stuack-at faults 

propagation path in row-direction (rFPsa) as follws. 
a) Writing Diagnostic Test Cubes: Configuring the 

diagnostic test look-up tables in MLUTs for 
exciting the fault propagation in row-direction.  

b) Appliying External Patterns: Appliying external 
pattern to input ports of MRLD. 

c) Obtaining Fault Path: Determining the fault path 
in row-direction via observing the output port with 
fault port of MRLD. 

2) Col-direction diagnosis: Creating the stuack-at faults 
propagation path in col-direction (cFPsa) as follws. 
a) Writing Diagnostic Test Cubes: Configuring the 

diagnostic test look-up tables in MLUTs for 
exciting the fault propagation in column-direction. 

b) Appliying External Patterns: Appliying external 
pattern to input ports of MRLD. 

c) Obtaining Fault Path: Determining the fault path 
in column-direction via observing the output port 
with fault port of MRLD. 

3) Determining fault location: Finding out stuak-at faults 
location (LOCsa) through computing the intersection 
of rFPsa and cFPsa: rFPsa ∩ cFPsa. 
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(a) Data outputs come from the look-up table. 
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(b) Stuck-at fault affect data outputs. 

Fig. 4. Stuck-at Fault change of the address to affect data outputs. 
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(c) Data outputs vary with the look-up table.  
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(a) Diagnosis in row-direction. 

Top IO port: ti[1:0], to[1:0]

Le
ft 

IO
 p

or
t: 

li[
7:

0]
, l

o[
7:

0]

R
ig

ht
 IO

 p
or

t: 
ri[

7:
0]

, r
o[

7:
0]

x0y0

A6
D6

D1
A1

A7
D7

D0
A0

A4 D3
A3

A5
D5

D2

D4

A2
A3
D3

D4

A2

A4

D2
D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A3
D3

D4
A4

A2
D2

D5
A5

A1
D1

D6
A6

A0
D0

D7
A7

A4 D3
A3

A5
D5

D2

D4

A2

x1y0

Bottom IO port: bi[1:0], bo[1:0]
x1y1

x0y1
A6
D6

D1
A1

A7
D7

D0
A0

 
(b) Diagnosis column-direction. 

Fig. 5. Diagnostic strategy 
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B. Diagnostic test generation for stuck-at interconnect faults 
In this subsection, we describe concretely the diagnostic 

test generation for stuck-at interconnect faults on the basis of 
the diagnostic strategy proposed in subsection A. 

For row-direction diagnosis, we propose the Diagnostic 
Test Cubes in row-direction (rDTC). The rDTC consists of 
two Cubes (Cube1 and Cube 2). The Cube 1 and the Cube 2 
are written respectively into SRAM1 (or SRAM3) and SRAM2 
(or SRAM4) for creating the path of fault propagation in row-
direction. When applying External Pattern all-zero to input 
ports of MRLD, the stuck-at-1 (sa-1) fault will be propagated 
to output port of MRLD in row-direction, thus the path for 
stuck-at-1 fault in the row-direction (rFPsa1) will can be 
obtained by observe the output ports of MRLD. When 
applying External Pattern all-one to input ports of MRLD, the 
stuck-at-0 (sa-0) fault will be propagated to output port of 
MRLD in row-direction, thereby the path for stuck-at-0 fault 
in the row-direction (rFPsa0) will can be obtained by observe 
the output ports of MRLD. For an MLUT with m pairs of AD 
interconnects A[m-1:0] and D[m-1:0], and constructed by 
four 2m/2word×m-bit SRAMs including two asynchronous 
SRAMs (SRAM1, SRAM2) and two synchronous SRAMs 
(SRAM3, SRAM4). The diagnostic test generation in row-
direction for stuck-at (sa) fault is as follows. 

Process 1: Diagnostic Test Generation in row-direction for sa 
[rDTC] 

Cube 1: For the SRAMs share the low-order address 
inputs (A[m/2-1:0]) of MLUT, set contents of the 
address lines A[m/2-1:0] to D[m-1:m/2]=A[0:m/2-1], 
D[m/2-1:0]=all-zero. 

Cube 2: For the SRAMs share the high-order address 
inputs (A[m-1:m/2]) of MLUT, set contents of the 
address lines A[m-1:m/2] to D[m-1:m/2]=all-zero, 
D[m/2-1:0]=A[m/2:m-1] 

[Test for sa-1 fault] 
External Pattern: Apply pattern all-zero to the input ports. 
Fault Path: The path (rFPsa1) that the output port is one. 

[Test for sa-0 fault] 
External Pattern: Apply pattern all-one to the input ports. 
Fault Path: The path (rFPsa0) that the output port is zero. 

 
Figure 6 shows an example of rDTC configured in an 

MLUT with 8 pairs of AD interconnects. For each MLUT, we 
write Cube1 and Cube2 in the asynchronous SRAM1 and 
SRAM2, respectively. In the Cube1, the low 4-bit data outputs 
[D3:D0] of all address are all-zero, the high 4-bit data outputs 
[D7:D4] of each address are [A0:A3]. In the Cube2, the high 
4-bit outputs [D7:D4] of all address are all-zero, the low 4-bit 
outputs [D4:D0] of each address are [A4:A7]. Because that 
the data outputs [D7:D0] of SRAM1 and SRAM2 are 
connected by OR function as illustrated in Figure 1 (b), the 

data outputs [D7:D0] of each MLUT are the values of address 
inputs [A0:A7]. i.e. the address line Ak is connected to the data 
output line D7-k for each MLUT, thus the construction of the 
propagation path of the fault from the row direction is realized. 

Similarly, for column-direction diagnosis, we designed the 
Diagnostic Test Cubes in column-direction (cDTC). The 
diagnostic test generation in column-direction for stuck-at 
fault is as follows. 

Process 2: Diagnostic Test Generation in col-direction for sa 
[cDTC] 

Cube 1: For the SRAMs share the low-order address 
inputs (A[m/2-1:0]) of MLUT, set contents of the 
address lines A[m/2-1:0] to D[m-1:m/2]=all-zero, 
D[m/2-1:0]=A[0:m/2-1]. 

Cube 2: For the SRAMs share the high-order address 
inputs (A[m-1:m/2]) of MLUT, set contents of the 
address lines A[m-1:m/2] to D[m-1:m/2]=A[m/2:m-1], 
D[m/2-1:0]=all-zero. 

[Test for sa-1 fault] 
External Pattern: Apply pattern all-zero to the input ports. 
Fault Path: The path (cFPsa1) that the output port is one. 

[Test for sa-0 fault] 
External Pattern: Apply pattern all-one to the input ports. 
Fault Path: The path (cFPsa0) that the output port is zero. 

 
Figure 7 shows as an example of cDTC configured in an 

MLUT with 8 pairs of AD interconnects. Where, the data 
outputs [D7:D0] of all address are [0000A0A1A2A3] and 
[A4A5A6A70000] for SRAM1 and SRAM2, respectively. i.e. 
for each MLUT, the address line Ak in low 4-bit address 
(k=0,1,2,3) is connected to the data output line D7-(k+4) and the 
address line Ak in the high 4-bit address (k=4,5,6,7) is 
connected to the data output line D7-(k-4), thus the propagation 
path of the fault from the column direction is created. 

Executing the process 1 and process 2, the paths (rFPsa 
and cFPsa) of stuck-at fault in row-direction and column-
direction can be obtained. The location of stuck-at fault can be 
determined by computing the intersection of rFPsa and cFPsa. 
The whole diagnostic process for stuck-at fault is as follows. 

Process 3: Determining fault location of stuck-at fault. 
[Row Diagnosis] 

Executing the process 1, obtaining the path of sa-1 fault 
and sa-0 fault in row-direction (rFPsa1 and rFPsa0).  

[Col Diagnosis] 
Executing the process 2, obtaining the path of sa-1 fault 
and sa-0 fault in column-direction (cFPsa1 and cFPsa0).  

[Fault Location] 
sa-1 fault location: LOCsa1 = rFPsa1 ∩ cFPsa1 
sa-0 fault location: LOCsa0 = rFPsa0 ∩ cFPsa0 
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Fig. 10. Simulation results of stuck-at-1 fault injection in row-direction diagnosis  

Fig. 11. Simulation results of stuck-at-1 fault injection in column-direction diagnosis  

Fig. 12. Simulation results of stuck-at-0 fault injection in row-direction diagnosis  

Fig. 13. Simulation results of stuck-at-0 fault injection in column-direction diagnosis  
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Fig. 9. The 16-bit MLUT. 
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Fig. 8. MRLD with 6×6 16-bit MLUTs array. 
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IV. EXPERIMENTAL RESULTS 
To evaluate the proposed diagnostic method, we designed 

a MRLD with 36 MLUTs arranged in a 6×6 array as shown in 
Figure 8. It consists of 48-bits IO ports at the left and right side, 
20-bits IO ports at the top and bottom side of the array, 
respectively. As shown in Figure 9, each MLUT has 16 pairs 
of AD interconnects [A15:A0] and [D15:D0], and consists of 
four 256word×16bit SRAMs including two asynchronous 
SRAMs and two synchronous SRAMs, respectively. 

To verify the capability of the fault diagnosis method, we 
performed the logic simulation using ModelSim by injecting 
the stuck-at fault (0 and 1) nodes to the netlist of MRLD, and 
observe the logic value at the output ports (lo, ro, to, bo) of 
MRLD. As process 3 described in section III, we performed 
the logic simulation for the row-direction diagnosis and the 
column-direction diagnosis, respectively. 

Figure 10 shows the simulation results of stuck-at-1 fault 
diagnosis in row-direction. We write the diagnostic test cubes 
(rDTC) to in all MLUTs, and apply the external patterns all-
zero to the input ports (li, ri, ti, bi) of MRLD. When a stuck-
at-1 is injected into the address input A2 of MLUT x2y1 (data 
output D2 of MULT x1y0), the output value of ro[6] is 
changed to 1. The fault path in row-direction can be 
determined as rPFsa1 = {x0y1A2 (li[10]), x1y0A13 
(x0y1D13), x2y1A2 (x1y0D2), x3y0A13 (x2y1D13), x4y1A2 
(x3y0D2), x5y0A13(x4y1D13), x5y0D2 (ro[6])}. Figure 11 
shows the simulation results of stuck-at-1 fault diagnosis in 
column-direction. We write the diagnostic test cubes (cDTC) 
to in all MLUTs, and apply the external patterns all-zero to the 
input ports, When a stuck-at-1 is injected into the address 
input A2 of MLUT x2y1 (data output D2 of MULT x1y0), the 
output value of bo[14] is changed to 1. The fault path in 
column-direction can be determined as cPFsa1 = 
{x2y0A2(ti[14]), x1y0A5 (x2y0D5), x2y1A2 (x1y0D2), 
x1y1A5 (x2y1D5), x2y2A2 (x1y1D2), x1y2A5 (x2y2D5), 
x2y3A2 (x1y2D2), x1y3A5 (x2y3D5), x2y4A2 (x1y3D2), 
x1y4A5 (x2y4D5), x2y5A2 (x1y4D2), x1y5A5 (x2y5D5), 
x1y5D2 (bo[14])}. The location of stuck-at-1 fault can be 
determined by computing the intersection of rFPsa1 and 
cFPsa1: LOCsa1 = rPFsa1 ∩ cPFsa1 = x2y1A2 (x1y0D2).  

Figure 12 and Figure 13 shows the simulation results of 
stuck-at-0 fault diagnosis in row-direction and column-
direction, respectively. we inject the stuck-at-0 fault at the 
same location x2y1A2 (x1y0D2) as the stuck-at-1 fault. When 
applying the external pattern all-one to the input ports of 
MRLD, the output value of ro[6]  and bo[14] is changed to 0 
in the row-direction diagnosis and in the column-direction 
diagnosis, respectively. The same fault path rPFsa0 and 
cPFsa0 as the fault path of stuck-at-1 is determined. The 
location of stuck-at-0 fault can be determined by computing 
the intersection of rFPsa0 and cFPsa0: LOCsa0 = rPFsa0 ∩ 
cPFsa0 = x2y1A2 (x1y0D2). 

V. CONCLUTIONS  
In this paper, we introduced the MRLD which is a 

promising alternative reconfigurable device for the next-
generation IoT/AI edge devices. To guarantee the reliability 
of MRLD, we proposed a diagnostic method that can 
determine the fault location in the MLUT array by computing 
the intersection of the fault propagation paths in row-direction 
and column-direction. Logic simulation with fault injection 
fault confirmed the effectiveness of the proposed diagnostic 
method that can diagnose all injected stuck-at fault. 

In our future work, we will evaluate the effectivity of the 
proposed diagnosis method for multiple stuck-at faults and 
explore the diagnostic generation method for locating others 
interconnect faults (such as open fault, bridge fault, etc.) in the 
MRLD device. 
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