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Abstract 

The recent rapid evolution of Internet of Things (IoT) and Artificial Intelligence (AI) 

technologies has accelerated the emergence of a smart society where every object can 

interface with the internet. This connectivity facilitates real-time data collection and 

analysis. One of the pivotal challenges within this context is maintaining the integrity and 

reliability of edge devices—key components of IoT systems operating within a 5G 

environment. The accumulation of inaccurate data from compromised edge devices may 

incur erroneous decision-making, thus compromising the overall system reliability and 

deteriorating trust in the smart society. 

This study addresses the reliability issues of two distinct types of edge devices: 

electronic control units (ECUs) deployed within advanced driving-assistant systems 

(ADAS), and an innovative memory-based programmable logic device (MPLD) 

specifically engineered for executing AI functionality in IoT systems. 

The initial objective of this study is to enhance the reliability of ECU devices, 

instrumental in automotive control systems. Adherence to functional safety standards, 

specifically ISO 26262, is a mandatory requirement for these devices. Under the 

functional safety standard ISO 26262, automotive systems necessitate in-field testing, 

such as the power-on self-test (POST). The POST examines safety-critical components 

during the system’s startup, prior to executing any functional operations. This test is vital 

for the early detection of potential internal faults to prevent system failures. Nevertheless, 

for testing automotive ECUs, the POST requires minimal test application time to achieve 

essential test quality (e.g., >90% latent fault metric) to meet the functional safety criteria 

of ISO 26262. This research proposes a performance-enhanced POST, specifically the 

Multi-Cycle Power-on Self-Test, which applies multiple test clocks to execute numerous 

function operations after a root test pattern is set into the Circuit Under Test (CUT). To 

address fault-masking and fault detection degradation under multi-cycle testing, this 

study presents a test point insertion technique to reduce test application time while 

maintaining superior fault detection for multi-cycle POST. Moreover, a method is devised 

to identify a user-specified number of test points capable of achieving the greatest scan-

in pattern reduction to attain a target test coverage. 

The secondary objective concentrates on enhancing the reliability of MPLD edge 

devices. These are particularly designed for low power consumption and low latency in 

edge computing applications. This study explores two fundamental aspects of MPLD 
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reliability: interconnect defect testing during the manufacturing phase and aging 

monitoring techniques to ensure field reliability. During the manufacturing process, the 

detection of interconnect faults in the memory-based programmable elements (MLUTs: 

multiple look-up tables) array is of critical importance to yield improvement and the 

assurance of high reliability. The study proposes a comprehensive test method capable of 

detecting and identifying stuck-at and bridge faults in the interconnects between MLUTs. 

Moreover, to guarantee long-term field reliability, an aging monitoring technique is 

proposed that employs a ring oscillator circuit to periodically measure the delay of 

MLUTs. This method facilitates the detection of aging-induced delays, potentially leading 

to performance degradation and system failures, thereby ensuring the in-field reliability 

of MPLD devices.  

Extensive experiments and simulations on benchmark circuits demonstrate the 

effectiveness of the test point insertion technique, achieving a significant reduction in test 

application time while maintaining high fault detection quality for the automotive ECUs. 

The interconnect defect test method for MPLDs successfully identifies and locates single 

interconnect faults, contributing to enhanced manufacturing processes and field reliability. 

The aging monitoring technique accurately gauges the delay of MLUTs, yielding 

invaluable insights into the operational aging state of MPLD devices. 

This study constitutes a significant contribution to the field of reliability 

enhancement for IoT and AI edge devices, with a specific emphasis on automotive ECUs 

and MPLDs. The proposed techniques grapple with the challenges of ensuring functional 

safety and long-term reliability in these devices, which are vital for the development of a 

smart society. Future research directions include the exploration of additional fault 

detection methods, test generation techniques, and design for testability approaches for 

MPLDs. Furthermore, the study of quantitative analysis and on-chip test methods will be 

pursued to deepen the understanding and management of aging phenomena in these 

devices. 
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Chapter 1 

1. Introduction 

1.1 Background 

In recent years, rapid advancements in IoT (internet of things) and AI (artificial 

intelligence) technologies have made the realization of an ultra-smart society more 

plausible. In such a society, every object connects to the internet, enabling real-time data 

collection and analysis. Particularly, in IoT systems within a 5G environment, a vast 

number of edge devices (integrated circuits) connect to the cloud, facilitating data 

collection and analysis. 

However, if we don’t ensure the integrity of edge devices, inaccurate data could be 

collected in the cloud, leading to erroneous decision-making based on data analysis. This 

might result in decreased system reliability, undermining the safety and confidence of the 

ultra-smart society. 

Simultaneously, with the rapid progress of AI technology, AI edge devices with 

intelligent capabilities are evolving at the data generation source, i.e., the edge endpoints. 

This reduces the dependence on cloud systems and enables real-time data analysis and 

processing on edge devices. However, physical defects in AI edge devices may decrease 

the accuracy of intelligent processing. 

To secure the ultra-smart society, high-reliability technology for IoT and AI edge 

devices is indispensable. The primary factor that impairs the reliability of edge devices is 

“failure.” While various approaches such as high-quality manufacturing tests before 

shipment, redundancy, and duplication techniques have been proposed, establishing field 

testing techniques during edge device operation remains a challenge. Furthermore, there 

is a need for testing techniques to guarantee the reliability of specially designed edge 

computing devices that have been newly developed. 

1.2 Objective 

Edge devices are broadly classified into two categories: non-reconfigurable devices, 

such as ECUs (electronic control units), and reconfigurable devices, such as FPGAs 

(field-programmable gate arrays). In recent years, with the progress of self-driving cars, 

the functional safety of ECUs in automotive systems has become a fundamental 
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requirement according to the ISO 26262 standard. On the other hand, the requirements of 

edge devices, such as low power consumption and small latency, hinder the application 

of traditional reconfigurable devices in edge processing. To address this, a new type of 

reconfigurable device named MPLD (memory-based programmable logic device) 

specially designed for edge processing is being developed. Therefore, this study focuses 

on two objectives:  

(1) Reliability enhancement for automotive ECU edge devices. 

(2) Reliability enhancement for MPLD edge devices. 

1.2.1 Reliability Enhancement for Automotive ECU Edge Devices 

First, this study aims to develop fault detection enhancement technologies to meet 

functional safety standards for automotive ECU edge devices.  

Automotive ECU edge devices play a critical role in automotive control systems, 

and improving their reliability is essential. According to the functional safety standard 

ISO 26262, automotive systems must undergo field-testing, such as power-on self-test 

(POST). Unlike production testing, POST needs to reduce test application time and meet 

the test quality (e.g., >90% latent failure indicator), indispensable for ISO 26262. By 

developing high-speed and high-quality fault detection methods in field testing, we can 

ensure accurate fault detection and thus functional safety of automotive ECU edge 

devices.  

Specifically, to enhance the reliability of automotive ECUs, our goal is to develop a 

fast built-in self-test (BIST) method that can satisfy test quality and detect faults in 

automotive ECUs edge devices in real-time. Based on this goal, this study proposes a test 

point insertion technique for multi-cycle power-up self-test to reduce test application time 

with indispensable test quality. 

1.2.2 Reliability Enhancement for MPLD Edge Devices 

Next, this study will shift our focus to the reconfigurable edge device MPLD and 

develop fault detection and fault state warning techniques for its reliability.  

The MPLD is built exclusively with an array of MLUTs (multiple look-up tables) 

without any additional programmable interconnect resources. An MLUT is the essential 

reconfigurable element constructed by SRAMs (static random-access memories). In 

contrast to traditional reconfigurable device FPGAs, the MPLD can achieve a high 

density of programmable devices with low power consumption and minimal delay.  
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During the production phase of the MPLD, a variety of defects may exist in the 

SRAM memory of the MLUT. Conventional memory testing methods are available for 

these memory defects. However, a significant number of defects could also be present on 

the interconnects between MLUTs; these defects could cause considerable yield loss and 

reliability degradation.  

In addition, when the MPLD operates in the field, various aging phenomena such as 

HCI (hot carrier injection) and BTI (bias temperature instability) could cause aging-

induced delays in the MLUT array of the MPLD. The rate of aging progress in the MLUT 

array may vary. Frequently-used MLUTs may exhibit faster aging speeds, meaning the 

aging-induced delay would be larger. These variations in aging-induced delay could affect 

the performance of configured logic circuits and even cause a system failure, threatening 

the in-field reliability of the device.  

Therefore, to guarantee the long-term reliability of the MPLD, this study proposes 

test techniques tailored to its specific needs. These include a test method to detect and 

identify interconnect defects in the MLUT array during the production phase and a delay 

monitoring technique to detect aging-induced failures in the field. 

1.3 Structure of this Dissertation 

This dissertation is organized as follows: 

Part I Introduction and Preliminary 

Chapter 1 introduces this study. 

Chapter 2 introduces some important concepts in integrated circuits and test techniques 

that are relevant to this study. 

Part II Test Point Insertion for Multi-Cycle Power-On Self-Test 

Chapter 3 introduces multi-cycle test scheme. 

Chapter 4 introduces fault detection model in multi-cycle BIST. 

Chapter 5 introduces proposed methods of test point insertion and selection for multi-

cycle BIST. 

Part III Test to Memory-based Programmable Logic Device 

Chapter 6 gives an introduction to the MPLD. 

Chapter 7 introduces reliability issue in MPLD. 

Chapter 8 proposes test method to identify interconnect defect in MPLD. 

Chapter 9 proposes aging monitoring technique for MPLD. 

Part IV Application of MPLD 

Chapter 10 introduces a solution to implement neural networks into MPLD 

Chapter 11 outlines a summary of this study. 
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Chapter 2 

2. Preliminary 

This chapter introduces some important concepts related to this study, including 

integrated circuit (IC) concepts, reliability of IC, principles of IC testing, fault modeling, 

test generation, fault simulation, and design for test (DFT) techniques. 

2.1 Integrated Circuit 

An integrated circuit (IC), also known as a microchip or simply a chip, is a miniature 

electronic device that contains thousands, millions, or even billions of electronic 

components, such as transistors, resistors, capacitors, and diodes, fabricated onto a single 

semiconductor material, typically silicon. These components are interconnected by 

conductive pathways etched into the chip’s surface, forming a complex network of 

electronic circuits. The integration of numerous components onto a single chip allows for 

the creation of compact, lightweight, and highly efficient electronic systems. 

Integrated circuits can be classified into various types, including digital, analog, and 

mixed-signal (which consist of both digital and analog signaling on the same IC) 

integrated circuits. Each type is tailored for specific applications. However, this 

dissertation will not cover analog and mixed-signal integrated circuits. 

2.1.1 Digital Logic Circuit 

A digital circuit is also known as a logic circuit because it carries out logical 

operations on digital signals. Logic (or digital) circuits are constructed by interconnecting 

elements called gates (or logic gates) whose inputs and outputs represent only the values 

in terms of 0 and 1 [1].  

Some of the common logic gates are AND, OR, NOT, NAND, NOR (an inverter), 

and XOR (Exclusive-OR); with symbols as shown in Figure 2.1. The output of each gate 

can be represented by a logic function of the inputs, i.e., a Boolean function. The Boolean 

(logic) operations ⋀ (∙), ⋁ (+), ¬ (¯), and ⨁ correspond to AND, OR, NOT, and XOR, 

respectively. A logic function can often be also specified by a truth table. These gates are 

fundamental building blocks in digital logic circuits and are used to perform various 

logical operations in computer systems and electronic devices. A summary of the logical 

operations performed by these gates is as following [1]. 
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Figure 2.1  Symbols, logic functions, and truth tables of some common logic gates. 

Logical Operations 

AND gate: The output is 1 only when both inputs are 1. E.g., the output z of an AND gate with 

inputs x1 and x2 is 1 if and only if both of its inputs are 1 simultaneously, and the logic function 

can be expressed as 

z = x1 ⋀ x2 (or z = x1 ∙ x2 or z = x1x2) 

OR gate: The output is 1 if at least one input is 1. E.g., the output z of an OR gate with inputs 

x1 and x2 is 1 if and only if any of its inputs are 1, and the logic function can be expressed as 

z = x1 ⋁ x2 (or z = x1 + x2) 

NOT gate: It simply negates the input value. E.g., the output z of an NOT gate with inputs x is 

1 if and only if its input is 0, and the logic function can be expressed as 

z = x (or z = ¬x) 

NAND gate: It is the negation of an AND gate, meaning the output is 1 when at least one input 

is 0. E.g., the output z of a NAND gate with inputs x1 and x2 is 1 if and only if any of its inputs 

are 0, and the logic function can be expressed as 

z = x1 ⋀ x2 = x1 ⋁ x2  

NOR gate: It is the negation of an OR gate, so the output is 1 only when both inputs are 0. E.g., 

the output z of a NOR gate with inputs x1 and x2 is 1 if and only if both of its inputs are 0, and the 

logic function can be expressed as 

z = x1 ⋁ x2 = x1 ⋀ x2 

XOR gate: The output is 1 when the inputs have different values. E.g., the output z of an XOR 

gate with inputs x1 and x2 is 1 if and only if its inputs are not simultaneously equal, and the logic 

function can be expressed as 

z = x1x2 ⋁ x1x2 = x1 ⨁ x2 

2.1.2 Combinational and Sequential Logic Circuit 

Logic circuits can be categorized as combinational (logic) circuits or sequential 

(logic) circuits, depending on whether the logic circuits contain a feedback loop which is 

a directed path from the output of some gate to an input of that gate [1]. 

A combinational (logic) circuit consists of an interconnected set of gates with no 

feedback loops. A block diagram for combinational circuits is shown in Figure 2.2(a), 

where the inputs and outputs are used to interact with the circuit and are also known as 

the primary inputs (PIs) and primary outputs (POs), respectively. The output values of a 

combinational circuit at a given time depend only on the present applied input values. 

Hence, each output can be specified by a logic function of its input variables. 

A sequential (logic) circuit consists of two sections: a combinational circuit part and 

the feedback loops containing memory circuits. The output values of a sequential circuit 

at a given time depend on the present applied input values and previous applied input 
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values. The history information of previous applied inputs is summarized as the state of 

the circuit and stored in memory. Figure 2.2(b) shows a block diagram for sequential 

circuits, where the outputs of the memory as the feedback inputs feeding the present state 

of the sequential circuit; and the inputs of the memory as the feedback outputs 

summarizing the next state for the sequential circuit. A sequential circuit can be modeled 

mathematically by a finite-state machine (FSM) or sequential machine, and each primary 

output and state can be specified in the FSM according to the primary input variables. 

Figure 2.2  Combinational and sequential logic circuits. 

Sequential circuits can be further categorized as either synchronous circuits or 

asynchronous circuits, depending on whether or not the memory portion of the circuit is 

controlled (or clocked) at discrete instants of time (time-frame) by a synchronizing pulse 

signal called a clock pulse or simply a clock.  

A synchronous circuit is applied to a clock to the memory portion, and all feedback 

loops are controlled synchronously by the clock. Figure 2.3(a) shows a block diagram for 

synchronous circuits. The memory element in a feedback loop is a flip-flop (FF). Only at 

a clock pulse can the FFs be stored with new information, i.e. at this time, the present 

state can be updated, simultaneously with the next state being stored in the FFs.  

An asynchronous circuit operates asynchronously, and its memory portion does not 

need to be clocked by a synchronizing pulse signal. Figure 2.3(b) shows a block diagram 

for asynchronous circuits. The memory element in each feedback loop is either a latch or 

a time-delay element.  

Figure 2.3  Synchronous and asynchronous sequential circuits. 
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2.1.3 Latch and Flip-flop 

Latches are the fundamental element that stores binary information in logic circuits. 

A latch stores one bit of a binary value as long as power is applied and holds its value 

until it is updated by new input signals. The latch is built from logic gates to derive a 

bistable circuit to keep the stable value by itself. 

Figure 2.4 shows a basic bistable circuit that is built by two NOT gates in a feedback 

loop, it is also known as two cross-coupled inverters. This circuit keeps two stable states 

Q and Q, which means it can store a bit value. The value of the stable states can be 

updated for storing a new value by additional gates to control the two cross-coupled 

inverters. 

Figure 2.4  Bistable circuit. 

As shown in Figure 2.5(a), two additional OR gates control the two cross-coupled 

inverters (it can also be considered as two cross-coupled NOR gates), and it can set (S) or 

reset (R) the value of the Q and Q by input signals of the OR gates. This is known as an 

SR-latch. The SR-latch can also be designed by adding AND gates to the two cross-

coupled inverters or with two cross-coupled NAND gates, as shown in Figure 2.5(b). The 

SR latch can be added gates at inputs to provide an additional control input (C) that 

determines when the state of the latch can be changed. This is known as a gated SR-latch 

(with control input), as shown in Figure 2.5(c).  

Figure 2.5  SR-latch. 
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simultaneously. But it holds significance as it serves as the basis for implementing other 

latches and flip-flops. Figure 2.6 shows a D-latch implemented by using an SR-latch. The 

D-latch is more commonly used than the SR-latch because it eliminates the indeterminate 

state of the SR-latch by making the S and R of the SR-latch never equal simultaneously. 

Although latches are valuable for storing binary information and designing asynchronous 

sequential circuits, they are not suitable for synchronous sequential circuits due to the 

lack of time control leading to an immediate output response, unlike flip-flops. 

Figure 2.6  D-latch. 
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Figure 2.7  D flip-flop. 
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input, whatever input we apply on the input side, at the same time as a clock transition 

will be stored in the D-FF. Therefore, it is convenient to use the D-FF in the registers. 

Figure 2.8  Register. 

There is another type of register where it is possible to shift binary data between 

adjacent flip-flops of the register. This type of register is known as the shift register. In a 
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Figure 2.9  Shift register. 
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diagram for an SRAM that can store 2kword×m-bit. Which shows 2k×m binary storage 

cells and the decoder for selecting individual words. 

Figure 2.10  Schematic diagram for an SRAM. 

2.1.6 Transistor 

Logic gates are realized by transistors, and today most integrated circuits are 

implemented by metal oxide semiconductor field effect transistors (MOSFET, or simply 

MOS) because larger integrations can be obtained with them [1]. The most basic 

MOSFET-based logic families are p-channel MOSFET (PMOS) and n-channel MOSFET 

(NMOS). Another dominant MOS-based logic family is the complementary MOSFET 

(CMOS), which consists of a pair of complementary NMOS and PMOS transistors.  

Figure 2.11(a) shows the circuit symbols for NMOS and PMOS transistors [2]. For 

NMOS transistors, when the gate-to-source voltage Vgs is less (more) than the threshold 

voltage Vth, the drain will be in a cut-off (turn-on) state to the source. For PMOS, it is in 

a cut-off state when Vsg is less than Vth, and in a turn-on state when Vsg is more than Vth. 

Figure 2.11(b) shows a COMS invertor. 

Figure 2.11  Transistors. 
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2.2 Integrated Circuit Reliability 

As IC technology continues to advance greatly, the integration levels of ICs have 

increased dramatically. The increase in the number of integrated transistors has led to the 

emergence of large-scale integration (LSI), very large-scale integration (VLSI), and 

even ultra-large-scale integration (ULSI). The high circuit density of ICs improves their 

performance and reduces their cost. On the other hand, high integration density requires 

extremely fine manufacturing processes, where even minute variations in these processes 

can easily lead to defects (A defect in an IC is a flaw or physical imperfection that may 

result in a fault manifestation [3][4].), thus may resulting in a failure IC. Furthermore, 

high-integration ICs, due to their tiny transistors and delicate interconnections, are prone 

to damage from various factors during field use, such as aging or wear. These challenges 

highlight the increasing importance of reliability in high-integration ICs. 

The reliability of an IC varies with the failure rate over its life cycle [5]. One 

common approach to analyzing the reliability of ICs, particularly LSI devices, is by using 

the “bathtub curve” model. It is a widely adopted model used in reliability engineering to 

describe the failure pattern of electronic components, including ICs. This model 

characterizes the failure rate of ICs over time. As shown in Figure 2.12, the bathtub curve 

consists of three phases: the early failure phase, the random failure phase, and the wear-

out failure phase [5]. 

Figure 2.12  Bathtub curve for IC reliability. 
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represents the normal operating life of ICs, where failures occur randomly due to various 

factors such as external stresses, electrical overstress, or component wear-out. 

Wear-out Failure Phase: Over time, as ICs age and accumulate usage, they enter the 

wear-out failure phase. In this phase, the failure rate starts to increase, indicating the 

degradation of components and a higher likelihood of failures. Wear-out failures are 

typically associated with aging effects, such as electromigration, oxide breakdown, or 

material fatigue. 

By understanding the bathtub curve model and its application to IC reliability, 

researchers and engineers can assess and improve the reliability of ICs. For this purpose, 

one of the important roles involves the IC test technique. By employing effective IC test 

techniques to detect and minimize the defects causing failures, the normal operating life 

of ICs can be extended. As shown in Figure 2.12, before an IC is shipped to the market, 

in early failure phase conducting high quality manufacturing test can eliminate the 

defective IC or that with a high potential for failure. By employing strategies such as field 

test and field monitoring to report and predict the random failures and wear-out failures, 

the overall reliability of shipped ICs can be enhanced.  

2.3 Integrated Circuit Test 

2.3.1 Purpose of Test 

An IC test is a procedural examination aimed at detecting and/or localizing faults 

resulting from defects (or design errors) within ICs [1]. It can be carried out at various 

stages in the lifecycle of an IC chip to ensure reliability, including during the design 

(involving design verification), manufacturing (involving manufacturing test), and field 

operation (involving field test or field monitoring) stages [4]. This Dissertation mainly 

focuses on the test during the manufacturing stage and field operation stage. 

Depending on the specific purpose of the testing, the tests may be categorized as 

fault detection and fault location (also known as fault diagnosis) [1]. The purpose of fault 

detection is to determine whether an IC is defective (faulty) or free of faults (fault-free), 

while the fault diagnosis goes further by pinpointing the location and type of the fault, 

along with other pertinent information necessary for resolving the diagnostic issue. The 

fault detection is prioritized as the initial step during fault diagnosis.  

In the manufacturing test, fault detection is a mandatory step, because if any fault is 

present, the entire chip must be discarded and cannot be shipped to the market. At this 

stage, fault diagnosis is usually not necessary; it can of course be carried out selectively 
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for the purpose of improving the manufacturing process by identifying the location, type, 

and cause of faults present in the defective chips.  

In the field test (or field monitoring), if it is established that a fault exists by fault 

detection, typically, fault diagnosis may be subsequently employed to identify and isolate 

the specific faulty node or component for necessary repairs. 

2.3.2 Test Principle 

The basic scheme of IC testing is shown in Figure 2.13 [3][4][6]. A set or a sequence 

of input patterns is applied to the inputs of the circuit under test (CUT or DUT: device 

under test) that produce output responses at the outputs of the CUT, and then the output 

responses are compared with the expected (correct) responses to determine whether the 

CUT is fault-free (good) or faulty. It is considered fault-free and passes the test if the CUT 

produces the correct output responses (matched with the expected ones), otherwise, is 

faulty and fails the test. 

Figure 2.13  Basic scheme of IC testing. 
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2.4 Fault Models 

A chip may be produced various types of defects. Since the complexity and diversity 

of the defects, it is difficult to generate test patterns for the real defects. To generate test 

patterns more easily, it is necessary to build mathematical models that can accurately 

describe the behavior of the real defects and that must be computationally efficient in 

simulation environments. A mathematical model like this is known as the fault model. 

There are many fault models reflecting various defects. The most popular and 

common fault models, the stuck-at fault model, the bridging fault model, and the delay 

fault model, will be introduced in the following subsections. 

2.4.1 Stuck-at Fault Model 

A stuck-at fault describes a faulty behavior of the defect causing the value of a signal 

on lines (including PIs, POs, and interconnects) in a logic circuit to be stuck at a constant, 

either a logic 1 or a logic 0, referred to as stuck-at-1 (sa1) or stuck-at-0 (sa0), respectively. 

A defect such as this could be a short circuit between the signal wire and the power supply 

or ground, or it could be something else. Figure 2.14 shows an example of a stuck fault. 

Figure 2.14(a) shows a stuck-at-1 fault on line c, which is fixed to a value of 1 by a defect 

that could be a short to the power supply, and Figure 2.14(b) shows a stuck-at-0 fault on 

line d, which is fixed to a value of 0 by a defect that could be a short to ground. 

Figure 2.14  Example of stuck-at fault model. 

If only one fault exists in a logic circuit, it is referred to as a single fault. If two or 

more faults are present at the same time, then the set of faults is referred to as a multiple 

fault. For a circuit with n signal lines and a given fault model with k different types of 

faults (for the stuck-at model k=2: sa1 and sa0), there may be at most k×n single faults; 

and fault collapsing techniques can help reduce these numbers [06]. For multiple faults, 

the number of possible faults increases sharply up to (k+1)n-k×n-1. Testing for multiple 

faults is difficult due to too many faults to be assumed; however, testing for single fault 

models can be utilized to test multi-fault models; therefore, single fault models are 

typically used for test generation [4]. 
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2.4.2 Bridging Fault Model 

A bridging fault reflects the behavior of a defect causing that the value of a signal 

line is dominated by the value of another signal line. A typical type of such defect is a 

short circuit in a certain situation between two signal lines, as shown in Figure 2.15(a). 

Depending on the short circuit situation, the values of the bridged signal lines are 

dominated in different ways, which leads to several different types of bridging faults. 

Generally, the values of shorted signal lines are dominated by either logic value 0 or 1 [1]. 

If it is 0-dominant, it is referred to as the wired-AND bridging fault model (AND-bridge), 

as shown in Figure 2.15(b); If it is 1-dominant, it is referred to as the wired-OR bridging 

fault (OR-bridge) model, as shown in Figure 2.15(c) [6]. These two types of bridging 

faults are the most frequently used in practice. 

Figure 2.15  Bridging fault: wired-AND/wired-OR bridging fault models. 

Other bridging fault models are the dominant bridging fault model, and the 

dominant-AND/dominant-OR bridging fault model. The dominant bridging fault model 

was developed to more accurately reflect the behavior of certain short circuits in CMOS 

circuits, in which case one line is assumed to act as the driver, dominating the logic values 

on the two short lines [4][6]. In certain cases, the dominant bridge fault model fails to 

accurately reflect the behavior of a resistive short. To address this limitation, the 

dominant-AND/dominant-OR model has been proposed to take into account the observed 

behavior of resistive shorts in specific CMOS circuits, where one driver exerts dominance 

over the logic value of the shorted lines, but only under certain logic conditions [4]. 
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injection, bias temperature instability). These faults can manifest in different ways, 

including hold time violations, setup time violations, clock skew, or interconnect delays. 

Depending on the ways to model delay faults, there are several typical delay fault 

models considered, which are the transition fault model, gate-delay fault model, line-

delay fault model, segment-delay fault model, and path-delay fault model [7]. Transition, 

gate, and line delay models are utilized to characterize delay defects that concentrate at 

individual gates. Conversely, path and segment delay models are employed to address 

delay defects that are dispersed across multiple gates [7]. These models are specifically 

designed to capture and represent the various types of delay defects in the timing behavior 

of integrated circuits.  

In these models, it is assumed that in a fault-free circuit, each gate, along with its 

interconnects on the input and output pins, possesses a predefined nominal rise (fall) delay 

from each input to the output pin. When delay defects increase the nominal rise (fall) 

delay, it results in a slow-to-rise (slow-to-fall) fault [7], as depicted in Figure 2.16. This 

fault implies that the transition from 0 to 1 (or 1 to 0) will not reach any output within the 

specified time limits and result in faulty circuit behavior.  

Figure 2.16  Delay fauls: slow-to-rise (slow-to-fall) faults. 

2.5 Test Generation 

To generate effective test patterns to identify the various potential fault models in 

the circuit, a process referred to as test generation is to be done [3]. Figure 2.17 shows a 
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Figure 2.17  Test generation procedure. 

2.5.1 Logic Simulation 
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2.5.2 Fault Simulation 
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2.5.3 Fault Coverage 

Fault coverage is used to evaluate the effectiveness of the generated test patterns in 

detecting faults for high test quality. As defined in the formula below, it evaluates the 

quality of the test patterns by quantifying the ratio of the number of detected faults to the 

total number of faults in the fault list.  

Fault coverage=
Number of detected faults

Total number of faults
 

Higher fault coverage indicates that the set of test patterns is more effective and able 

to detect more faults specified in the fault list. During the test generation process, if the 

result of the fault coverage evaluation for the applied test patterns to the fault simulation 

is unsatisfactory, new test vectors should be added through the test generator until the 

fault coverage after the fault simulation reaches a satisfactory value. 

However, sometimes, it is very hard to obtain high fault coverage for some circuits, 

especially for very highly integrated chips, because some faults in the circuit are difficult 

to detect or even undetectable using conventional tests. For this reason, a technique called 

design-for-testability has been proposed for achieving high test quality. 

2.6 Design for Testability 

As circuit integration increases, testing becomes increasingly difficult. Design for 

testability (DFT) is a crucial aspect of modern circuit design that focuses on making 

circuits easier to test. By incorporating specific techniques and hardware into the design, 

DFT enables efficient control and observation of the internal state of the circuit from 

external access points. This ensures that products are thoroughly and accurately tested, 

guaranteeing their reliability and performance. This section will discuss three popular 

DFT techniques: scan design, logic built-in self-test, and test point insertion. 

2.6.1 Scan Design 

Scan design is a widely used DFT technique that enhances testability by introducing 

scan chains into a circuit to obtain the controllability and observability of the internal 

state in the circuit. Typically, a scan chain is a shift register formed by connecting certain 

selected flip-flops in a circuit in a linear fashion, allowing for the insertion and extraction 

of test data during the testing process. These flip-flops that are selected for the scan design 

are called scan flip-flops (SFFs) or scan cells. The number of these SFFs in a scan chain 

is the length of this scan chain. By incorporating scan design, the internal state of the 
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circuit can be efficiently controlled, enabling the application of various test patterns and 

the observation of circuit responses. The scan chain facilitates the shift of test data in and 

out of the circuit, simplifying the testing procedure and improving fault coverage. 

Figure 2.18 shows a schematic for a scan design [4]. A test control signal (TC) added 

to all flip-flops in the scan chain controls the three operation modes of the scan chain: 

normal mode, shift mode, and capture mode. In normal mode, all flip-flops operate in the 

normal functional configuration of the circuit. In shift mode, any desired test data can be 

set to all the flip-flops of the scan chain by shifting from the scan-in. These test data will 

be applied to the circuit in the normal mode. In capture mode, the test responses stored in 

the flip-flops can be observed from the scan-out by shifting. 

Figure 2.18  Schematic for a scan design. 

There is usually more than one implementation way to convert the selected flip-flop 

in a circuit into a scan cell SFF. The most widely used scan cell is the Muxed-D scan cell 

[4], as shown in Figure 2.19. The Muxed-D scan cell is implemented by using a D flip-

flop and a multiplexer. A scan enable input (SE) on the multiplexer is used to select the 

data input (DI) and scan input (SI). 

Figure 2.19  Example for implementing a SFF: Muxed-D scan cell. 
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and applies test patterns to the circuit, autonomously detecting and identifying faults or 

errors. LBIST eliminates the need for external test equipment, making the testing process 

more autonomous and efficient. By embedding self-test circuitry, LBIST enables 

comprehensive testing of the circuit’s internal logic and facilitates fault diagnosis and 

localization. 

Figure 2.20 illustrates the basic architecture of LBIST [4][6]. Three key components 

are designed within the circuit for implementing self-testing. One of these components is 

the test pattern generator (TPG), which automatically generates test patterns to be applied 

to the inputs of the circuit under test (CUT). These test patterns stimulate the CUT and 

help detect potential faults. The output response analyzer (ORA) is responsible for 

compacting the output responses of the CUT into a signature through signature analysis 

and comparing it with the expected signature. Additionally, the logic BIST controller (or 

test controller) generates specific test control signals to coordinate the BIST operation 

among the TPG, CUT, and ORA. Once the BIST operation is completed, the ORA 

provides a pass/fail indication, indicating whether the circuit has passed or failed the test.  

Figure 2.20  Basic architecture of LBIST. 

In LBIST applications, TPGs are commonly implemented using linear feedback 

shift registers (LFSRs). Figure 2.21 illustrates the structure of an n-stage modular LFSR 

typically used for generating test patterns or test sequences. It consists of n D flip-flops 

and a selected number of XOR gates. It can efficiently generate sequences with good 

randomness (pseudo-random sequences) at a relatively small area cost. 

Figure 2.21  n-stage modular LFSR. 
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In ORAs, signature analysis schemes are often employed to compress the output 

responses. These schemes typically use multiple-input signature registers (MISRs). 

Figure 2.22 shows the structure of an n-stage MISR. This MISR compresses multiple 

output sequences by simultaneously feeding them into extra XOR gates added to the 

modular LFSR.  

Figure 2.22  n-stage MISR. 

2.6.3 Test Point Insertion 

Test Point Insertion (TPI) is a DFT technique aimed at enhancing observability and 

controllability within the circuit. It is typically used to improve the detection probability 

of RP-resistant (random-patterns resistant) faults so they can be detected during pseudo-

random testing, to increase the circuit’s fault coverage to a desired level [4]. TPI involves 

strategically inserting additional circuit nodes, called test points, including control points 

and observation points, throughout the design. These test points provide access to internal 

signals, allowing for the monitoring and control of specific areas within the circuit during 

testing. By carefully selecting and placing test points, engineers can target critical areas 

or potential fault sites, improving fault detection and enabling more effective debugging 

and characterization of the circuit. 

Figure 2.23 shows two typical types of test points [4]: a test point with a multiplexer 

and a test point with AND-OR gates. Where the control point (CP) can be connected to a 

primary input, an existing scan cell output, or a dedicated scan cell output; the observation 

point (OP) can be connected to a primary output through an additional multiplexer, an 

existing scan cell input, or a dedicated scan cell input; and a test control signal (TC) 

controls the test mode and normal operation mode of the test point.  

Figure 2.23  Two typical types of test points. 
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With the rapid evolution of technologies in developing automotive systems toward 

fully autonomous vehicles, various complex integrated circuits (ICs) are embedded in a 

car. The functional safety of the automotive system becomes a fundamental requirement 

as indexed by the ISO26262 standard [8]. 

Power-on Self-Test (POST) is the most common test solution to ensure the safety of 

a system. It tests the safety-critical components during the system’s startup before running 

any functional operations. It is thus helpful to detect any potential faults inside the 

components early to avoid a system failure. For testing automotive ICs, The POST needs 

to meet several constraints as follows. 

• Indispensable test quality: The ISO26262 standard imposes at least 90% latent fault 

metric to meet the most stringent automotive safety integrity level (ASIL D) for 

avoiding a random hardware failure (e.g., stuck-at faults) during the lifetime of ICs 

[8]; 

• Limited test application time (TAT): test must be complete during the power-on reset 

at the engine startup (e.g., 10∼50ms);  

• Low power: the consideration of power consumption during the test is helpful to 

avoid false tests under the delay fault model [9];  

• Low silicon overhead: suppress the increase of the Design for Test (DFT) hardware 

due to the ever-increasing complexity of ICs. 

The simple way to run the POST is to utilize the logic built-in self-test (LBIST) 

which is the general test infrastructure for the manufacturing test. An LBIST is typically 

a scan-based DFT scheme running test-per-scan testing, where each test (capture 

operation) is executed after a serial scan-shift of pseudo-random patterns/responses. It 

usually requires a large test volume to attain a reasonable test coverage due to the lower 

quality of the pseudo-random patterns generated by the on-chip test pattern generator 

(TPG). Consequently, the TAT increases under a usually slow scan-shift clock for scan-

shifting the test patterns. 

In the past, many sophisticated solutions have been introduced to reduce the test 

volume of the standard LBIST, such as scan structure optimization [10][11], the weighted 

random pattern [12][13], random vector perturbing [14], Bit-flipping [15], and reseeding 

[16][17][18]. Test point insertion (TPI) technology improves the testability of CUT by 

inserting test logic into the CUT to deal with the detection of random pattern resistant 

(RPR) faults [19][20][21]. Other solutions focus on improving the test scheme of LBIST 

to enable the test-per-clock testing [22][23], such as the shadow flip-flops insertion [24], 

and the Tri-Modal Scan test scheme [25] with reconfigurable scan cell design. Recently 
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the deterministic test compression technology is also applied to the automotive ICs to run 

a POST or an in-system test [26][42]. The deterministic compression test requires a 

modified BIST structure to allow applying the external test patterns generated by ATPG 

or continuous reseeding for high fault coverage. In this work, we focused on improving 

the test quality of an on-chip TPG-based LBIST by introducing a multi-cycle test 

described later to make the standard LBIST comply with the ISO26262 standard. 

Multi-cycle test applying more than one clock to run many times function operation 

after the scan-shift operation is a smart way to complement the quality of the test patterns 

(scan-in patterns) for test compaction [27][28][29], low-power testing [30][31][32], and 

logic diagnosis [33]. In a multi-cycle test, the response of CUT at each capture cycle is 

applied to the CUT in parallel as a capture pattern at the subsequent capture cycle. This 

feature is helpful to reduce the volume of scan-in patterns for attaining a target test 

coverage when the capture patterns can detect any additional faults that are missed by the 

root scan-in pattern. The multi-cycle test has the behavior to take the CUT closer to its 

functional operation conditions that can generate functional vectors with lower power 

consumption, which are very helpful to at-speed testing for delay fault detection [31][32]. 

It is also easy to implement the multi-cycle test w/o the extra overhead in terms of 

software (e.g., modified ATPG for deterministic pattern generation) and hardware (e.g., 

reseeding logic & memory). Therefore, the multi-cycle test is expected to be a promising 

test scheme to a trade-off among the test coverage, TAT, silicon area, and low power for 

POST. 

A multi-cycle test may not always be effective for test reduction when the functional 

sequences generated by the CUT are not helpful to fault detection. Appropriate DFTs that 

can complement the value of the functional sequences are necessary to enhance the ability 

of the multi-cycle test to test reduction. Many DFT approaches to improve delay fault 

detection were presented in the past. In [34], the authors proposed a new scan cell named 

Transition-Launch Flip-Flop to complement the test vectors by modifying the value of 

partial FFs after the launch cycle in a two-cycle broadside test. In [35] and [36], the author 

expanded the approach of [34] to multi-cycle tests and proposed the DFT approaches to 

enhance the ability of the capture states to delay fault detection by holding [35] or 

reversing [36] the value of all FFs at the appropriate capture cycles. These DFT 

approaches considered the condition/requirement of the hard-to-detect delay faults in the 

multi-cycle test. 

In our previous works [37] [40], we have discussed the fault masking problem and 

the fault detection degradation problem (FDD) that would obstruct the effect of multi-
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cycle tests to detect stuck-at faults. It is necessary to solve the problems to reduce the test 

application time of POST under the indispensable test quality specified in the ISO26262 

standard. The main difference between the existing DFT approaches and our works is to 

solve the Fault Masking and FDD problems for the stuck-at fault detection under the 

multi-cycle LBIST. 

The fault-masking problem denotes that the fault effects excited at the intermediate 

capture cycles might be masked before the effects are propagated to the final capture 

cycle for observation. To address this issue, we proposed a novel scan cell named the 

fault-detection-strengthened FF (FDS-FF) that directly observes and keeps the value of 

a faulty effect as it arrives at the FF during the capture operations [37][38][39]. 

The FDD denotes that the capability of capture patterns to detect additional stuck-at 

faults degrades with the increase of the number of capture cycles [40]. In [41], we have 

proposed a control point insertion (CPI) method to overcome the FDD by inserting 

control logic into scan FFs that modifies the value captured into the FFs during 

intermediate cycles, named the FF-CPI. While the basic idea is similar to the DFT 

proposed in [35][36], our approach targeted controlling partial FFs but not the whole scan 

chain. We also proposed an approximate evaluation approach to identify CPs by 

analyzing the circuit structure without fault simulation. In general, the fault-simulation-

based evaluation in [35][36] needs more processing time than our method. Moreover, in 

this study, we expand the FF-CPI approach of [41] to control the internal state of the 

combinational logic for stuck-at fault detection, which is different from the existing DFT 

approaches that will be described in Chapter 5. 

This part consolidates the FDS-FF insertion approach denoted by OP (observation 

point) insertion and the FF-CPI approach into a complete DFT technique referred to as 

the test point insertion (TPI). Unlike the conventional TPIs which detect the random 

pattern resistant faults, our TPI focus on addressing the Fault Masking problem and FDD 

problem under a multi-cycle LBIST scheme to reduce the volume of scan-in patterns to 

meet the indispensable test quality specified by ISO26262. 

The main contributions of this part are as follows. 

(1) We clarify the mechanism of Fault Masking and FDD by analyzing the stuck-at 

fault detection model in the multi-cycle BIST scheme.  

(2) We expand the FF-CPI approach to control the internal state of combinational 

logic by a newly proposed control logic circuit named Self-flipping CP to 

improve the testability for stuck-at fault detection under multi-cycle tests.  
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(3) We propose a new metric to evaluate the effect of candidate signal lines for CP 

insertion under the multi-cycle BIST scheme.  

(4) We introduce an improved probabilistic cost function to estimate the effect of CP 

and OP insertion.  

(5) We introduce a consistent procedure to identify a user-specified number of CPs 

and OPs to achieve the most scan-in pattern reduction for attaining a target test 

coverage in the multi-cycle BIST scheme.  

(6) We evaluate the effectiveness of the proposed TPI for shortening the test 

application time based on the experimental results of ISCAS’89 and ITC’99 

benchmark circuits under the single stuck-at fault model. 

The remainder of this part is organized as follows. Chapter 3 introduces the basic 

concept of test-per-scan BIST, the multi-cycle test, and its issues. Chapter 4 describes the 

fault detection model under multi-cycle BIST. Chapter 5 presents the TPI approach for 

multi-cycle BIST, shows the experimental results on benchmark circuits, and concludes 

the part. 
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Chapter 3 

3. Multi-Cycle Test Scheme 

In this chapter, we first review the characteristic of scan BIST and multi-cycle BIST 

and discuss the problems of multi-cycle tests. 

3.1 Scan BIST 

In a traditional test-per-scan BIST, pseudo-random vectors generated by the on-chip 

TPG are serially loaded into the scan chains driven by scan-shift clocks, known as scan 

operation. When all the scan registers are filled up, a complete scan-in pattern is latched 

to the inputs of the circuit. The circuit is then switched to the functional operation that 

generates the corresponding functional response at the outputs of the circuit. The FFs will 

be updated with the functional responses of the circuit when the trigger edge of the 

functional clock arrives, known as the capture operation. The captured functional 

response will be unloaded for fault detection as loading the next scan-in pattern. It is easy 

to observe that test is conducted only once by applying a complete scan-in pattern. Almost 

all test application time is consumed in the serial scan shift operation for test data delivery. 

3.2 Multi-cycle BIST 

The multi-cycle test applies more than one functional clock to run many capture 

operations for every single scan-in pattern. In Figure 3.1, we show the operations during 

the multi-cycle test in the time-frame expansion of CUT. Let’s define a multi-cycle test 

by <si, vi, cij, oi>, where si denotes a scan-in pattern; vi denotes a primary input vector; cij 

denotes the responses of CUT captured into the scan chains represented by the capture 

patterns at the jth functional clock; and oi denotes a scan-out pattern which is the response 

of the combinational circuit when cij is applied at the last capture. After a scan-in pattern 

si is loaded into the scan chain in serial, the corresponding response ci1 is generated at the 

outputs of combinational logic (FFs drawn in dashed line) and captured into the FFs in 

parallel by the functional clock T1. Then, ci1 is used as test stimuli and latched to the 

circuit to generate a new response ci2, and ci2 is applied and generates the corresponding 

response ci3 in parallel until the final capture clock is applied. The response captured at 

the final capture oi is unloaded for observation. It should be noted that the state of primary 



29 

 

inputs vi will be kept constant and the primary outputs in the intermediate capture cycle 

are considered unobservable during the capture operation. 

Figure 3.1  Test operations in multi-cycle BIST. 

From Figure 3.1, it can be observed that conducting a multi-cycle test for each scan-

in pattern <si, vi> could provide more chances to detect additional faults through the 

functional capture patterns cij. Therefore, it has promising potential to reduce the number 

of scan-in patterns for attaining a target test coverage that contributes to shortening the 

test application time due to fewer scan-shift operations. In addition, since the time of 

capture operation is negligible compared to the serial scan-shift operation, the reduction 

of the total test application time for POST is expectable. 

3.3 The Problems of Multi-cycle BIST 

In our earlier works, we have raised two issues that would obstruct the effect of 

multi-cycle test to reduce the scan-in patterns for shortening the TAT of POST, called the 

Fault Masking [37][38][39] and Fault Detection Degradation of Capture Pattern [40][41], 

respectively. The following gives a brief overview of these problems for this study. 

3.3.1 Fault Masking 

Fault Masking denotes that the fault effects excited at the intermediate capture 

cycles by capture patterns might disappear before these effects are propagated to the final 

capture cycle for observation. Suppose that a fault f is excited at the first capture cycle by 
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the scan-in pattern. To detect f, its faulty value has to be propagated through all M-1 

capture cycles until the final capture cycle is applied. When the CUT has a deep 

combinational logic or the capture operation runs in a large cycle number, the time-

expanded propagation path of the faulty value would become too long to be activated for 

detection, and the faulty value might be masked at certain logic due to the un-controllable 

logic state during the capture operation. Severe fault-masking would decrease the test 

quality of the scan-in patterns and capture patterns, and finally, obstruct the effect of the 

multi-cycle test for reducing the scan-in patterns. 

3.3.2 Fault Detection Degradation Problem (FDD) 

FDD means the capability of capture patterns to detect more additional stuck-at 

faults degrades as increasing the number of capture cycles. This is based on the 

observation that multi-cycle tests can take the CUT closer to its functional operation 

conditions with small internal transitions when increasing the capture cycles [31]. The 

functional operation would consequently cause the states of the large number of FFs to 

become constant when a number of capture cycles are applied. Since the value of FFs is 

reused as test stimuli at the subsequent capture cycles, the large number of FFs with 

constant values would cause the loss of randomness property of the capture patterns that 

obstructs the detection of additional faults. 
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Chapter 4 

4. Fault Detection Model in Multi-Cycle BIST 

In this chapter, we give a detailed analysis of the stuck-at fault detection model in a 

multi-cycle BIST scheme to elucidate the mechanism of Fault Masking and FDD as 

follows. 

For a stuck-at fault Fi, its faulty effect will always exist at each capture cycle during 

the capture operation, and we express it by fij in the time-expanded circuit as shown in 

Figure 4.1. The faulty effect of Fi at each capture cycle might be excited by the inputs of 

CUT. We use Peij to denote the probability to excite fault Fi at the jth capture cycle. To 

detect Fi, the excited faulty value of Fi at the jth capture cycle (fij) must be propagated to 

the scan FFs for observing after the final capture, and we denote the propagation 

probability as Ppij. 

Figure 4.1  Single stuck-at fault detection in time-expanded circuit. 

In LBIST, Peij and Ppij of a stuck-at fault Fi/s can be estimated by computing the 𝑠¬ 

controllability (𝐶𝑖𝑗/𝑠¬) and the observability (𝑂𝑖𝑗) of signal line i through the probabilistic 

random pattern testability measure such as COP (controllability observability procedure). 

Hence, the detection probability of Fi/s at the jth capture cycle denoted by Pdij/s can be 

expressed by Pdij/s=𝐶𝑖𝑗/𝑠¬×𝑂𝑖𝑗. For a multi-cycle test with M capture cycles, the fault Fi/s 

would have M times opportunity to be excited by the capture patterns ci1~ciM, and Fi/s will 

be detected out of once the fault is excited and propagated to the outputs. Hence, the 

detection probability of Fi/s denoted by Pdi/s in a multi-cycle test is the complementary 
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probability of the case that Fi/s cannot be excited and propagated for detection at all 

capture cycles, which can be expressed by: 

𝑃𝑑𝑖/𝑠 = 1 −∏(1 − 𝐶𝑖𝑗/𝑠¬ × 𝑂𝑖𝑗)

𝑀

𝑗=1

               (4.1) 

To calculate the controllability and the observability of signal lines at each capture 

cycle, we transform the CUT to M cycles time-frame expansion combinational circuit. 

We initialize the 0/1 controllability (𝐶𝑖1/0  and 𝐶𝑖1/1 ) of PI (primary input) and PPI 

(pseudo-primary input: FF) at the first capture cycle to 0.5/0.5, then, calculate the value 

of 𝐶𝑖𝑗/0 and 𝐶𝑖𝑗/1 for each gate at each time-frame. The observability of signal line at 

each time-frame is calculated starting from the PO (primary output) and PPO (pseudo-

primary output) at the last capture cycle with initial value of 1.0, tracing back to the PI 

and PPI until the first capture cycle. 

Compared to the traditional scan test with a single capture, the multi-cycle test 

shows the potential to improve the probability of fault detection for every single scan-in 

pattern followed by multiple capture patterns. However, the fault detection in the multi-

cycle test depends on the controllability and observability of signal lines in the time-

expanded circuit, which is generally deteriorating, as the number of capture cycles 

increases. 

For demonstration, we conducted preliminary experiments on ISCAS89 and ITC99 

benchmark circuits to evaluate the average 1-controllability and the observability of 

signal lines at each capture cycle. Figure 4.2 shows the results. In Figure 4.2(a), it can be 

observed that ITC99 circuits show higher 1-controllability, which implies the internal 

states of these circuits are easy to be 1, whereas ISCAS89 circuits likely trend to be 0. 

Figure 4.2(b) shows the standard deviation of 1-controllability of signal lines at each 

capture cycle corresponding to the results of Figure 4.2(a), to demonstrate the impact of 

increasing capture cycles on the controllability. The results show that the standard 

deviation of 1-controllability becomes higher as the capture cycles increase, which 

implies the controllability of more signal lines is biasing toward either 0 or 1; in other 

words, the value of more signal lines in a large capture cycle would be most likely fixed 

at 0 or 1 during the tests. For a signal line with stuck-at fault, higher 0-controllability (0-

bias) is helpful to excite the s-1 fault, whereas exciting the s-0 fault becomes difficult. 

Moreover, the biased controllability of signal lines in a time frame would also affect the 

path sensitization for propagating the excited faulty values to the FFs in the current time 

frame. We insist on it as the root cause of FDD observed in our previous works. 
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Regarding the observability shown in Figure 4.2(c) and Figure 4.2(d), it can be 

observed that in a 10-times expand circuit the value of more signal lines in earlier capture 

cycles is more difficult to be observed from the outputs (scan FFs) after the final capture. 

The deterioration of observability of signal lines at early capture cycles causes the faults 

excited at an early capture cycle difficult to be propagated to the final capture cycle for 

detection, which is the root cause of the fault masking. 

Figure 4.2  Testability vs. Capture Cycles 

Based on the analysis presented above, we have determined that the primary factor 

that affects the effectiveness of the multi-cycle test in reducing the number of scan-in 

patterns and shortening the TAT of POST is the incompatibility between controllability 

and observability in the time-expanded circuit under multiple capture cycles. Specifically, 

we have found that the controllability bias of the signal line at earlier capture cycles is 

smaller than that of later cycles, resulting in lower observability. This difference in 

controllability bias and observability between earlier and later cycles can lead to reduced 

effectiveness of the multi-cycle test. 

We insist that reconciling the incompatibility of testability under the multi-cycle test 

is necessary to improve the performance of multi-cycle BIST for scan-in pattern reduction. 
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Chapter 5 

5. Test Point Insertion and Selection for Multi-Cycle 

BIST 

5.1 Test Points for Multi-Cycle BIST 

In this chapter, we introduce the observation point and control point proposed in our 

previous works [37][38][39][40][41] to address the Fault Masking and the FDD of the 

multi-cycle test, respectively. 

5.1.1 Observation Point: FDS-FF 

To improve the observability of scan FFs at the intermediate capture cycles in the 

time-expanded circuit, we proposed a new scan-cell design named fault-detection-

strengthened FF (FDS-FF) that can directly observe and keep the value of FFs captured 

at each cycle.  

Figure 5.1  The DFT architecture of FDS-FF insertion for LBIST. 

Figure 5.1 shows the structure of FDS-FF and the DFT architecture for LBIST with 
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FDS-FF insertion. The output of CUT denoted as DATA is controlled by scan enable 

signal (SEN) through a NOR gate, and a sequential test controls the scan-in test enable 

signal (SEQ_TEST_EN) through a NAND gate. The FDS-FF can work in three modes: 

Shift, Capture, and User mode as shown in the table, where Shift and Capture modes refer 

to as the Test mode, and User Mode refer to as the functional operation. The CUT will 

work at the user mode when SEQ_TEST_EN and SEN are set to 0. In Test Mode, 

SEQ_TEST_EN is set to 1, and the SEN signal controls the shift and the capture modes. 

If SEN=1, the test pattern is loaded into FF. If SEN=0, the corresponding test responses 

are captured. It should be noted that the test responses of CUT captured at each cycle are 

XORed with the SIN, which is the data stored in the neighbor FF in the scan chain. In this 

way, the test responses of each cycle can be compacted by the XOR gate, and the 

compacted test responses will be applied to the next capture cycle as a new test pattern. 

Since FDS-FFs observe and keep the capture response of CUT during the capture 

operation, in order to avoid functional timing issues, all FDS-FFs are extracted to 

constructed into a daisy chain and isolated from the other normal scan chains. 

Figure 5.2  Replace a scan-FF with FDS-FF to address fault masking. 

Figure 5.2 shows the effect of FDS-FF to address the fault masking problem. In a 

time-expanded circuit, some faulty values are successfully propagated to the FF at the 

intermediate capture cycles; however, they would be masked before the final capture. 

Replacing a scan FF with the FDS-FF is equivalent to inserting an observation point into 

the time-expanded circuit to observe and keep these faulty values before they are masked. 

However, it is impractical to replace all scan-FFs with FDS-FFs; the fault effects that 

never pass through the selected FDS-FFs may disappear if they cannot be propagated to 

the final capture cycle. Fortunately, replacing a small count of scan cells with FDS-FFs 

could achieve significant fault detection improvement [38], which is beneficial for low 

hardware overhead. 
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5.1.2 Control Point: Self-Flipping CP 

Inserting control points into the circuit to force the target signal line to 0 (0-control) 

or 1 (1-control) is a popular way to improve the testability of the circuit. However, it 

would be challenging to adapt the conventional CPI to the time-expanded circuit under 

multi-cycle BIST because 1) CP with a fixed control value during a complete capture 

operation is less helpful to relax the controllability biasing; 2) generating the control 

values for each capture cycle requires complex sequential ATPG; 3) applying the dynamic 

control value to CP during the capture operation requires intricately designed control logic. 

In [40][41], we have proposed an FF-CPI approach to improve the controllability of 

the time-expanded circuit by modifying the captured values of partial scan FFs at each 

capture cycle. The FF-CP compares the state of FF at the current capture cycle with its 

state at the previous capture cycle and changes the current state to its inverse value if no 

state transition occurs on the FFs during the capture cycles. In this study, we expand the 

FF-CPI approach to control the combinational logic and propose the control logic that 

can flip the value of the signal line of CP during the capture operation. We call it the Self-

Flipping control in this study described as follows. 

Figure 5.3  Self-Flipping CP insertion for multi-cycle LBIST. 

Figure 5.3 shows the design of the Self-Flipping control logic. In the capture mode, 

the present state (CP_OUT@Ti-1: the state of CP after the previous capture cycle) and the 

new state (CP_IN@Ti: the input value of the candidate CP of the current capture cycle) of 

the CP are checked whether there is a transition occurs in the current capture cycle or not. 

If not, the Self-Flipping control logic will generate the inverse value of the input state to 

(b) Self-flipping control logic (c) The truth table of self-flipping control logic

(a) Inserting a self-flipping control point into the time-expanded circuit
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the CP output (CP_OUT@Ti). An external control signal “CAP_CTR” is used to enable 

the self-Flipping when set to 1. Otherwise, the input value of CP passes through the CP 

logic to the output. It thus can keep the value of a target signal line at the adjacent time-

frame always different to relax the bias of 0/1-controllability caused by successive capture 

cycles. 

It is worth noting that a traditional inversion CP using an XOR gate would be 

ineffective in reducing the 0/1-controllability bias because the 0/1-controllability of XOR-

CP output depends on the input signal line, which is biasing as increasing the capture 

cycles. While inserting the Self-Flipping CP will cause hardware increase, it operates 

automatically during the capture cycles w/o any external control, which does not cause the 

extra cost in updating the ATPG to generate the deterministic control vectors. 

To implement the proposed multi-cycle LBIST scheme for POST, the unknown 

values (Xs) generated as switching the operation mode from test and function need to be 

dealt with carefully. This issue can be addressed by separating the control logic of POST 

from the test target of POST (CUTs) through wrapper logic. During the test operation, the 

wrapped control logic of POST will be kept in function mode. When the test is completed, 

the CUTs will be switched to the functional mode by a system reset through the control 

logic of POST. The detailed solutions to handle the implementation issues for in-system-

testing have been published in [42][43]. 

5.2 TP Selection for Multi-Cycle BIST 

This section introduces the procedure to determine the locations of CPs and OPs to 

address the Fault Masking and the FDD problem induced by the controllability biasing 

and observation deterioration under a multi-cycle LBIST scheme.  

While the selection procedure inherits some underlying techniques proposed in our 

previous works, such as the structure-based evaluation metric and the probabilistic 

testability analysis of circuits for FDS-FFs and FF-CP insertion, in this study, we 

consolidate them into a consistent process for TP selection under multi-cycle BIST 

through the following efforts: 

• We propose a new metric to evaluate the effect of candidate signal lines for CP 

insertion under a multi-cycle BIST scheme. 

• We introduce an improved probabilistic cost function for estimating the effect of 

candidate TPs. 
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• We introduce an OP Pruning approach into the TP procedure to improve the 

efficiency of TP selection under the multi-cycle BIST scheme. 

It is worth noting that the proposed TP selection procedure conducts the probabilistic 

evaluation to identify the candidate CPs and Ops. The proposed TP selection procedure 

is a time-saving process because the procedure does not use the conventional fault 

simulation. As a result, we obtain the list of the TPs, then we evaluate the fault coverage 

achieved under the circuit with TPs by conducting the multi-cycle test fault simulation at 

one time. 

5.2.1 A New Evaluation Metrics for CP Selection 

As discussed in Chapter 4, increasing the number of capture cycles would cause a 

significant 0/1-controllability bias on signal lines at later capture cycles, which implies 

the value of more signal lines in a large capture cycle would most likely fix at 0 or 1 in 

most capture cycle. For a signal line x, if setting its value to 0(1) would cause fewer gates 

with fixed output value in its arrival logic region to FFs than that of setting to 1(0), 0(1)-

controllability bias of x due to the multiple capture cycles would be helpful to fault 

excitation and propagation we call it positive bias, 1(0)-controllability bias would obstruct 

the fault detection called the negative bias. For the signal line shows a negative bias in 

controllability, it is suggested to insert a self-flipping CP to relax its controllability bias 

in the multi-cycle test. Following this, we propose the method to calculate the degree of 

the 0/1 controllability bias when inserting a CP into the signal line. 

• x: a signal line in the combinational circuit  

• px/0: the probability of line x’s value being logic 0  

• px/1: the probability of line x’s value being logic 1, where, px/1+px/0=1.0 

• fgx/0: the number of gates in the arrival logic region from line x to POs/PPOs whose 

output value will be fixed, as setting the value of x to 0 

• fgx/1: the number of gates in the arrival logic region from line x to POs/PPOs whose 

output value will be fixed by setting the value of x to 1 

• BD(x): the degree of controllability bias at line x that would impact the fault 

detection, where BD(x)>0 denotes a positive bias, BD(x)<0 denotes a negative bias. 

BD(x)=(px/0-px/1)×(fgx/1-fgx/0)                             (5.1) 

• CD(x): the degree of contribution to relax the controllability bias as forcing the 0/1-

controllability of line x to 0.5/0.5. CD(x)>0 denotes a positive contribution, 

CD(x)<0 denotes a negative contribution that would be achieved by CP insertion.  

CD(x)=(px/0-0.5)×fgx/0+(px/1-0.5)×fgx/1=(0.5-px/0)×(fgx/1-fgx/0)   (5.2) 

We use the s27 circuit as an example for illustration, see Figure 5.4. For signal line 

i, two paths connect with the PPO (FF2) through path 1: i → G5 → G7 → G8 → w, and 
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path 2: i → G6 → G7 → G8 → w. When the value of i is 1, the output of G5, G6, and G7 

will be fixed at 1, 1, 0, respectively, thus fgi/1=3. When i is 0, the output of G5 and G6 

depends on the other input signal lines n and c, which implies a 0 value at i cannot directly 

cause any fixed gates on the two paths to FFs, thus fgi/0=0. The probability of signal line 

i’s values pi/1 and pi/0 can be calculated using the COP measurement, which is 0.25 and 

0.75. The degree of controllability bias is hereby BD(i) = 0.5×3 = 1.5, which represents 

that the controllability bias at signal line i is positive to fault detection. 

Figure 5.4  The combinational logic frame of s27 circuit. 

For the signal line with positive controllability bias, inserting a CP would cause 

more fixed gates on the fault propagation paths to FFs with a negative contribution to 

fault detection, e.g., CD(i)=-0.25×3=-0.75. Table 5.1 gives the evaluation value of some 

signal lines shown in Figure 5.4. It can be observed that signal lines q and s show the 

negative controllability bias in BIST, and inserting a CP to s would achieve the most 

contribution to fault detection. 

Table 5.1  Evaluation metrics of signal lines in s27 

line # fgx/0 fgx/1 px/0 px/1 BD CD 

h 0 2 0.75 0.25 1 -0.5 

i 0 3 0.75 0.25 1.5 -0.75 

n 0 1 0.75 0.25 0.5 -0.25 

q 3 0 0.56 0.44 -0.36 0.18 

s 0 2 0.27 0.73 -0.92 0.46 

As shown in Figure 4.2, the controllability bias on signal line changes at different 

capture cycles in the multi-cycle BIST. It becomes larger as increase the number of 

capture cycles. Thus, the degree of controllability bias of signal line x: BD(x) and the 
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contribution of CP insertion to relax the impact of controllability bias on fault detection: 

CD(x) can be easily extended for the multi-cycle test as follows. 

𝐵𝐷(𝑥) =
𝑓𝑔𝑥/1 − 𝑓𝑔𝑥/0

𝑀
∑(𝑝𝑥𝑗/0 − 𝑝𝑥𝑗/1)

𝑀

𝑗=1

                                  (5.3) 

𝐶𝐷(𝑥) =
𝑓𝑔𝑥/1 − 𝑓𝑔𝑥/0

𝑀
∑(0.5 − 𝑝𝑥𝑗/0)

𝑀

𝑗=1

                                     (5.4) 

where pxj/1 and pxj/0 denote the probability of line x’s value being logic 1/0 at the jth 

capture cycle. We use CD as the evaluation metrics for searching the candidate signal 

lines for CP insertion under multi-cycle BIST, which is described in the next section. 

5.2.2 TP Selection Procedure for Multi-cycle BIST 

The procedure consists of two phases, Phase 1: CP insertion under a time-expanded 

circuit with full FF-observation, and Phase 2: OP is pruning to remove the impotent 

observation points (FDS-FF). 

In Phase 1, the CP selection will be performed at the time-expanded circuit with full 

observation where the FFs at intermediate capture cycles are supposed to be observable. 

This is because the purpose of self-flipping CP insertion is to relax the controllability bias 

caused by functional operation at each time frame, but not to create long propagation 

paths that can cross multiple time frames to the final capture cycle for observation which 

is an arduous task. The algorithm for CP insertion is shown in Algorithm 1. 

To evaluate the quality of CPs and OPs, cost function U as follows is widely used 

in various TPI techniques. 

𝑈 =
1

|𝐹|
∑

1

𝑃𝑑𝑥/𝑠
∀𝑥/𝑠∈𝐹

                                               (5.5) 

In this work, we expand the cost function considering the fault detection model 

under the multi-cycle BIST scheme, where the detection probability of the faults at a 

signal line denoted by Pdx/s is calculated by 

𝑃𝑑𝑥/𝑠 = 1 −∏(1 − (1 − 𝐶𝑥𝑗/𝑠) × 𝑂𝑥𝑗

𝑀

𝑗=1

)                               (5.6) 

Cxj/s and Oxj denote the s-controllability and observability of signal line x at the jth 

time-frame, respectively, computed by COP measure as discussed in Chapter 4. The 

difference in U before (Uorg) and after (Utp) inserting a TP can be calculated by the 

following equation to identify the most effective TP from a candidate TP list. 

∆𝑈 = 𝑈𝑜𝑟𝑔 − 𝑈𝑡𝑝 =
1

|𝐹|
∑ (

∀𝑖/𝑠∈𝐹

1

𝑃𝑑𝑖/𝑠
𝑜𝑟𝑔 −

1

𝑃𝑑𝑖/𝑠
𝑡𝑝 )                 (5.7) 
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Algorithm 1: CP insertion 

Inputs:  

net: original CUT netlist 

M: the number of capture cycles 

Ncp: Maximum number of CPs 

Outputs:  

cplist[Ncp]: Selected CP list 

netcp: CUT with CP insertion 

Optional parameter: 

CRthreshold: the threshold of cost reduction (≥0) 

Ncand: number of candidate CP at each iteration of CP decision   

Process: 

1:  cplist ← ∅ 

2:  cand ← ∅  /*Candidate CP list for determining a CP*/ 

3:  read_circuit (net); 

4:  fix_gate_cal(net); /*computing fgx/0 , fgx/1*/ 

5:  time_expansion (net, M); 

6:  full_observation_point_insertion(𝑛𝑒𝑡); 
7:  while |cplist|< Ncp do 

8:   cop_controllability(netcp); 

9:   cop_observability(netcp); 

10:  CD_calculate (netcp); 

11:  cand ← ∅;  

12:  for j=1 to # of available candidate CP do 

13:   cand[j] ←unchecked signal line with the largest CD; 

14:  end for 

15:  if cand=∅ then 

16:   return cplist, netcp; stop the process 

17:  else  

18:   Uorg=cost_computation(netcp,M); 

19:   for k=1 to Ncand do 

20:    netcp=insert cand[k] cp to netcp; 

21:    update_controllablity_observability(netcand[k], M);  

22:    ∆𝑈𝑘=Uorg-cost_computation(netcp, M); 

23:    Remove cand[k] from netcp; 

24:   end for 

25:   If maximum(∆𝑈k)>= CRthreshold then 

26:    cplist[i]←cand[k];  

27:   end if 

28:  end if 

29:  insert cplist[i] to net → update netcp; 

30: end while 

31: return cplist, netcp; 

End process 

In Phase 2, we will remove the impotent observation points from the time-expanded 

circuit to reduce the hardware overhead caused by FDS-FFs insertion, named OP pruning, 

as shown by Algorithm 2. In OP pruning, the input is the time-expanded circuit with CP 

insertion achieved at Phase 1 where all scan FFs are replaced with FDS-FFs for 

observation during multi-cycle captures. We target on reducing the amount of FDS-FFs 

to a user-specified number Nop by restoring the FDS-FFs that do not affect the fault 

detection to scan FFs. As shown from line 14 to line 24 of algorithm 2, we compute the 

cost U of each candidate FDS-FF when temporarily changing it to a scan FF which is 
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equivalent to a wire in the intermediate time-frame circuit, and remove the one which has 

the least cost increase from the OP list.  

The OP pruning is considered effective based on the following observations. 1) The 

large number of signal lines usually can be observed by multiple FFs; 2) The FFs which 

have larger observable logic regions could observe more fault effects. 3) The number of 

FFs in a design is much smaller than that of signal lines, and exploring the inactive FFs 

would be more time-saving than inserting OPs into the CUT. 

Algorithm 2: OP Pruning 

Inputs:  

netcplist: CUT with CP insertion 

M: number of capture cycles 

Nop:Target number of OPs (FDS-FFs) 

Outputs:  

oplist[Nop]: FF list for FDS-FFs insertion 

nettp : CUT with TPs (CP and OP) 

Optional parameter: 

Ncand: # of candidate OPs at each iteration for OP pruning 

Process: 

1:  oplist ← ∅ 

2:  cand ← ∅  /* Candidate target OP list for pruning */ 

3:  read_circuit (netcp); 

4:  oplist← all FFs 

5:  structure_analysis(netcp); 

6:  FF_ranking(oplist) /*Ranking the FFs by the approximate evaluation metrics proposed in [39]*/ 

7:  while |oplist|>Nop do 

8:   for j=1 to # of available candidate OP do 

9:    cand[j] ←select an OP in the oplist in descending order which is unchecked; 

10:  end for 

11:  if cand=∅ then 

12:   return oplist, nettp; stop the process 

13:  else  

14:   Uorg=cost_computation(nettp,M); 

15:   for k=1 to Ncand do 

16:    remove cand[k] OP from nettp; 

17:    update_observability(nettp);  

18:    ∆𝑈𝑘=Uorg-cost_computation(nettp, M); 

19:    restore cand[k] OP to nettp; 

20:   end for 

21:   If ∆𝑈k =minimum then 

22:    remove cand[k] OP from nettp; 

23:    remove cand[k] from oplist;  

24:   end if 

25:  end if 

26: end while 

27: return oplist, nettp; 

End process 

5.3 Experimental Results 

Experiments are conducted on ISCAS89 and ITC99 benchmark circuits to evaluate 
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the effect of TPI under multi-cycle BIST. A 16-bits internal type LFSR (characteristic 

polynomial: X16+X15+X13+X4+1) with Phase Shifter generates pseudo-random patterns. 

A parallel scan structure is introduced into the CUT that consists of multiple scan chains 

up to 100 FFs in length (when the total number of FFs > 1600, the maximum length of 

the chain is up to 200). A multi-cycle BIST logic/fault simulator that can simulate at most 

50 cycles capture per pattern is implemented in-house for stuck-at faults testing. For 

automotive ICs, the ISO26262 functional safety standard imposes at least 90% latent fault 

metric (permanent fault) to meet the safety goal ASIL D. Therefore, in this study, we set 

a target fault coverage 90% and evaluate the effect of the proposed multi-cycle TPI that 

would make the classical on-chip pseudo-random TPG-based LBIST comply with the 

ISO26262 standard. Table 5.2 gives the details of CUTs.  

Table 5.2  Detailed information of benchmark circuits 

Circuit # gate # FF 
# of 

stuck-at fault 

Ncp 

(<1% of gates) 

Ncp 

(<5% of FFs) 

#OPs (FDS-FFs) 

(<20% of FFs) 

s9234 5597 228 6927 55 11 45 

s13207 7951 669 9815 79 33 133 

s15850 9772 597 11725 104 29 120 

s38417 22179 1636 31180 1141 85 327 

s38584 19253 1452 36303 97 72 290 

b11 437 31 1322 2 1 6 

b12 904 121 2797 9 6 24 

b14 4444 245 12811 44 12 49 

b15 8338 449 23528 8 8 89 

b17 22645 1415 65464 201 70 283 

b20 8875 490 25338 88 24 98 

 

5.3.1 Evaluation of the Efficiency of the Multi-Cycle Test 

We first performed fault simulations on the regular scan testing with single capture 

(SCAN) and multi-cycle testing with 2, 4, 6, 8, and 10 capture cycles, respectively, to 

evaluate the effect of multi-cycle testing for fault detection, using 100k test patterns (scan-

in) generated by LFSR. Figure 5.5 shows the fault coverage of each circuit at different 

capture cycle test when 100k patterns are applied. It can be seen that for most circuits, 

multi-cycle test achieved an increase in fault coverage at 2 and 4 capture cycle. As 

continuous increasing the capture number to 10 cycles, the increment of fault coverage is 

slowing down or getting degraded. For s9234, multi-cycle test shows significant decrease 

of fault coverage. It can be explained by the incompatibility of testability shown in Figure 

4.2, where 10-cycle test caused a little controllability bias, however, significant 

deterioration of the observability in the expanded circuit. 
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Figure 5.5  Fault coverage of benchmark circuit with 100k patterns. 

Figure 5.6 shows the curve of the average fault coverage of all CUTs by increasing 

the number of patterns. The horizontal and vertical axis shows the pattern number and the 

corresponding fault coverage, respectively. The average fault coverage of all CUTs 

confirms that multi-cycle test has a statistical improvement in fault detection for most 

benchmark circuits compared with scan testing (SCAN). Applying 4 and 6 capture cycles 

achieved the most fault coverage improvement, and the increment of fault coverage 

becomes less as the number of capture cycles increases to 8 and 10 cycles. 

Figure 5.6  Scan testing vs multi-cycle testing. 

The above observations fit the basic feature of multi-cycle testing discussed in 

Chapter 4. Multiple capture operations would provide more detection opportunities for 
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the fault that the scan-in pattern cannot detect. Therefore, it is possible to improve the 

fault detection of the scan-in pattern. However, the deterioration of testability of signal 

lines in the time-expanded circuit would interfere with future fault detection as increasing 

the capture cycles. To reinforce the effect of multi-cycle BIST on scan-in pattern 

reduction, CP insertion and FDS-FFs insertion are introduced, and their effects are 

described as follows. 

5.3.2 Evaluation of the Efficiency of the CPI and the OPI 

We conducted the CP selecting and OP pruning algorithm proposed in Section 5.2 

on the benchmark circuits to identify a specified amount of CPs and FDS-FFs, where the 

maximum number of CPs Ncp was set to 1% of the gate number of CUT, and 5% of the 

FFs, respectively. The expected amount of FDS-FFs is set to 20% of the total number of 

FFs in the CUT. The number of CPs and FDS-FFs are shown in the fifth and the sixth 

column of Table 5.2, respectively. To demonstrate the difference between OPI and CPI, 

we performed fault simulation under 10 cycles by individually inserting the identified 

CPs and OPs into the CUTs, denoted by CP-ONLY and OP-ONLY, respectively. 

CPI&OPI denotes inserting both the CPs and OPs into the CUTs. Figure 5.7 shows the 

curve of average fault coverage of the benchmark circuits, increasing scan-in patterns to 

100K under different DFT strategies. The figure only presents the curves up to 50K 

patterns for demonstration. Full observation replaces all FF with FDS-FFs has been 

conducted on the CUTs w/(w/o) CP insertion denoted by FullOB, CP&FullOB, 

respectively. While it is not for practical use due to hardware overhead concerns, the 

results represent the upper bound of the fault coverage possibly achieved by OPI, which 

is used to evaluate how far the OP pruning has reached in identifying the OPs for FDS-

FFs insertion. 

Compared to the regular scan test (SCAN), the multi-cycle test w/o TPI denoted by 

“10-Cycle” in the figure achieved a significant fault coverage improvement where a 

target fault coverage (90%) is attained by applying 14,260 scan-in patterns under a 10-

cycle test, which cannot be achieved by scan testing even with more than 100K scan-in 

patterns. Replacing 20% of FFs with FDS-FFs (OPI-ONLY) further improved the fault 

coverage and reduced the necessary scan-in patterns to 5,175 for the target 90% fault 

coverage as well as the effect achieved by full observation (replacing all scan FFs with 

FDS-FFs). The results demonstrate the effect of FDS-FFs insertion that directly observes 

the values of FFs at each capture cycle to relax the fault masking problem in the time-

expanded circuit. 

Note the fault coverage curve of CPI-ONLY in Figure 5.7, where we inserted 1% of 
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the gate number of CPs into the CUTs, and it shows almost the same fault coverage 

improvement (≈93%) and much more scan-in pattern reduction (2,195 for 90% fault 

coverage) than that of OPI-ONLY. The results indicate 1) inserting Self-Flipping CP into 

the CUT that relaxes the controllability bias in a time-expanded circuit is helpful in 

improving the fault detection of capture patterns 2) the effect of CPI is limited due to the 

fault masking problem in the time-expanded circuit. When inserting both the identified 

CPs and OPs into the CUTs denoted by CPI&OPI, we achieved a sharp increase in fault 

coverage compared to inserting CPs and OPs individually. The final fault coverage of 

100K scan-in patterns increases to 95.01%. The number of scan-in patterns for achieving 

90% fault coverage is drastically reduced to 585 (24.4X reduction compared to the multi-

cycle test). Note the fault coverage curve of 10-cycle (multi-cycle test) and the 

CP&FullOB, which represents the upper bound of the fault coverage possibly achieved 

by CPI&OPI, inserting both the CPs and OPs (CPI&OPI) identified by our proposed 

method achieved remarkable fault coverage increase and pattern reduction that is very 

close to the upper bound. 

Figure 5.7  Fault coverage vs. Pattern number (scan testing, multi-cycle testing, OPI 

and CPI under multi-cycle testing). 

Table 5.3 and Table 5.4 show the detailed results of the final fault coverage achieved 

by applying 100K patterns and the number of scan-in patterns for attaining 90% stuck-at 

fault coverage, respectively. The experimental results when inserting fewer CPs (<5% of 

FFs) into the benchmark circuits are also presented in the tables. The results show that 

the 10-cycle test would cause the fault coverage loss in most ISCAS89 circuits (s9234, 
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s13207, s38584); however, it achieves a significant increase in ITC99 benchmark circuits. 

Where ISCAS89 circuits show a much more testability bias, increasing the capture cycles 

are vulnerable to fault masking and FDD problem. While inserting OP or CP individually 

both improved the fault coverage and reduce the patterns for attaining 90% fault coverage 

for all circuits, it suggests that combining the CPs and OPs can achieve the most pattern 

reduction under the multi-cycle BIST scheme. Reducing the number of CPs causes a 

corresponding degradation in the fault coverage and the scan-in pattern reduction, 

however, the degradation is small, e.g., when reduce the number of CPs from 201 to 70 

for b17 circuit, the fault coverage with 100k patterns decreased from 97.81% to 96.29%, 

scan-in patterns for 90% fault coverage increased from 130 to 185. The reduction of scan-

in patterns compared to the multi-cycle test is remarkable for shortening the TAT of POST 

with less hardware overhead. 

Table 5.3  The final fault coverage reached by 100K scan-in patterns 

Circuit 

Design for Testability Approaches 

SCAN 
10-

Cycle 
OPI_ONLY FullOB 

# of CP<1% of gates # of CP<5% of FFs 

# of 

CPs 

CPI-

ONLY 
CPI&OPI CP&FullOB 

# of 

CPs 

CPI-

ONLY 
CPI&OPI CP&FullOB 

s9234 87.31 84.94 89.94 90.00 55 82.69 89.68 91.80 11 83.3 87.96 88.02 

s13207 90.47 84.81 92.20 92.96 79 86.16 92.75 93.89 33 85.6 90.1 91.01 

s15850 87.51 87.73 88.48 90.18 104 85.09 87.41 91.52 29 86.47 87.71 90.77 

s38417 95.16 97.52 97.96 98.03 141 98.19 98.66 98.72 85 98.00 98.55 98.62 

s38584 91.31 90.81 91.59 92.07 97 91.16 91.70 92.28 72 90.27 90.93 91.53 

b11 96.75 96.75 96.75 96.75 2 98.03 98.03 98.03 1 96.82 96.82 96.82 

b12 97.28 98.64 98.68 98.68 9 99.18 99.21 99.21 6 97.6 97.6 97.64 

b14 85.61 90.36 90.38 90.40 44 93.71 93.96 94.07 12 93.81 94.04 94.08 

b15 69.75 92.94 92.95 92.95 8 98.35 98.36 98.36 8 98.35 98.36 98.36 

b17 79.17 92.85 92.85 92.86 201 97.76 97.81 97.83 70 96.27 96.29 96.32 

b20 84.69 89.52 89.66 89.69 88 93.10 93.61 93.94 24 92.68 93.17 93.22 

 

Table 5.4  The number of scan-in patterns to achieve 90% fault coverage 

Circuit 

Design for Testability Approaches 

SCAN 
10-

Cycle 
OPI_ONLY FullOB 

# of CP<1% of total gates # of CP<5% of FFs 

# of 

CPs 

CPI-

ONLY 
CPI&OPI CP&FullOB 

# of 

CPs 

CPI-

ONLY 
CPI&OPI CP&FullOB 

s9234 >100K >100K >100K >100K 55 >100K >100K 9180 11 >100K >100K >100K 

s13207 20560 >100K 11565 7375 79 >100K 6050 4175 33 >100K 59835 8885 

s15850 >100K >100K >100K 68905 104 >100K >100K 2380 29 >100K >100K 4710 

s38417 5780 1710 590 460 141 250 80 55 85 310 85 60 

s38584 8180 10645 3700 1960 97 1555 575 305 72 12795 960 330 

b11 475 120 120 120 2 45 40 35 1 115 115 105 

b12 1280 175 170 170 9 100 45 45 6 260 210 195 

b14 >100K 58280 58280 53425 44 1285 870 770 12 885 675 605 

b15 >100K 4180 4180 4115 8 285 230 170 8 285 230 170 

b17 >100K 4305 4300 4300 201 180 130 100 70 260 185 140 

b20 >100K >100K >100K >100K 88 4330 2045 935 24 7480 3740 3685 
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5.4 Conclusions 

The multi-cycle BIST has room for improvement to reduce the volume of scan-in 

patterns. Therefore, this study investigated the stuck-at fault detection model in the time-

expanded circuit. 

We revealed that the incompatibility between the controllability and observability 

of signal line as increasing the capture cycles would induce the fault masking and fault 

detection degradation problem. Those problems obstruct the effect of multi-cycle tests to 

test pattern reduction. We introduced the TPI technique to a multi-cycle LBIST scheme 

focused on reducing the volume of scan-in patterns for a target fault coverage to address 

this issue. The TPI approach replaces partial scan cells with FDS-FF referred to as OPI to 

enhance the observability and inserts Self-Flipping control logic into the combinational 

logic referred to as CPI to relax the controllability bias of signal lines of CUT at the 

intermediate capture cycles. 

To identify the TPs that could achieve the most scan-in pattern reduction, we 

proposed a metric called the CD (the degree of contribution to relax the controllability) 

to evaluate the effect of candidate CPI signal lines and introduced an improved 

probabilistic cost function for estimating the effect of CP and OP insertion under multi-

cycle BIST scheme. A TPI procedure including CP insertion and OP pruning is also 

proposed to identify the effective TPs to achieve the most scan-in pattern reduction. The 

experimental results on ISCAS89 and ITC99 benchmarks show 24.4X pattern reduction 

on average that confirming the effectiveness of the proposed TPI for shortening the test 

application time of POST. 

In the future work, we will implement the proposed TP selection algorithm to 

support the industrial design, to evaluate the effectiveness of the multi-cycle LBIST 

scheme on the commercial automotive ECUs. 
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Part III: Test to Memory-based Programmable 

Logic Device 
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Reconfigurable devices (e.g., FPGAs: field-programmable gate arrays) allow users 

to customize the functions in-field that provides a flexible (custom logic and routing) and 

scalable (add new functions) platform for system development, with faster development 

cycle time (better time-to-market), low design cost (e.g., IP reuse), high-performance 

(high-speed hardware), and long-term maintenance (update function). Benefiting from 

such abilities, FPGAs have gone successfully for many applications such as the IoT 

(internet of things) [44], SDV (self-driving vehicle) [45], and AI (artificial intelligence) 

[46].  

However, FPGAs suffer from area, power, and delay due to programmable 

interconnect resources [47][48]. Large amounts of interconnect resources also require 

multi-layer wiring architecture and advanced manufacturing technology that causes 

significant production costs. Large area, power, delay, and production cost issues prevent 

the FPGA from more. 

Recently, a new type of reconfigurable device called MPLD (memory-based 

programmable logic device) [49] is under development for edge computing devices in 

IoT and AI applications. In contrast to FPGAs, which require large amounts of 

programmable interconnect resources to achieve programmability, MPLD is constructed 

only with an array of MLUTs (multiple look-up tables) without any extra programmable 

interconnect resources. An MLUT is the essential reconfigurable element constructed 

using general SRAMs and connects with its neighbors via Address-inputs/Data-outputs 

called AD interconnects. Users can configure wires and logic into MLUTs by writing the 

corresponding truth tables into the SRAMs. This feature enables high-density 

reconfigurable devices with low production costs, low power consumption, and minimal 

delay. 

To guarantee the long-term reliability of MPLD, extensive production testing with 

high quality is first required to identify as many manufacturing defects as possible in the 

MLUT array. When the device is operating in the field, various hard-to-predict factors, 

such as aging phenomena [50][51], and environmental factors including operating 

temperature, power supply, noise, etc., can cause delay degradation in the MLUT array 

of MPLD and threaten its long-term reliability [52]. 

In this part, we focus on the issues that would affect the long-term reliability of 

MPLD. We propose a test method to address these reliability concerns to detect and 

identify interconnect defects in the MLUT array during the production phase. We also 

propose a delay monitoring technique to detect aging-caused failures in the field. 
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The proposed test method creates route maps in MPLD for fault propagation by 

configuring pre-designed test cubes into the SRAM array, it then excites faults by 

applying an external walking-zero/one vector to the external input ports of MPLD and 

identifies any faults through fault effects propagated to the external output ports. The 

delay monitoring method configures a novel ring oscillator (RO) logic design into MPLD 

to measure aging-induced delays. We designed an MPLD with a 6×6 MLUT array to 

evaluate the proposed methods by performing logic simulations. The simulation results 

with fault injection confirmed the effectiveness of the proposed methods. 

The main contributions of this part are as follows. 

1. We explore the fault models of interconnect defects within the MLUT array of 

MPLD. 

2. We propose approaches to test stuck-at faults and bridge faults caused by 

interconnect defects in the MLUT array during MPLD production. This 

contributes to high reliability and yield improvement. 

3. We propose a test method to accurately identify the location of faults. The 

proposed test method improves the manufacturing process and enables the 

avoidance of faulty MLUT blocks, thereby ensuring high reliability when the 

MPLD is put into practical use. 

4. We investigate the reliability issues induced by aging when the MPLD operates 

in the field and propose a monitoring technique to measure the aging-induced 

delay variations by configuring a novel ring oscillator logic design into MPLD. 

The remainder of this part is organized as follows: Chapter 6 introduces the 

architecture of MPLD and its basic working principle. Chapter 7 discusses the reliability 

concerns in the lifecycle of MPLD. Chapter 8 proposes the production test solution for 

interconnect defects. Chapter 9 presents the delay monitoring method. 
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Chapter 6 

6. Memory-based Programmable Logic Device (MPLD) 

This chapter gives an introduction to the architecture of the MPLD and its working 

principle, in order to serve as a basis for the work that follows in Chapters 7, 8, 9, and 10. 

The rest of this chapter is organized as the following: Section 6.1 introduces the 

architecture of the MPLD by describing detailed its structure, main component elements, 

and operation functions of these elements. Section 6.2 describes the working principle of 

the MPLD through two examples of configuring logic circuits to a single MLUT and 

multiple MLUTs, respectively. Finally, the chapter concludes in Section 6.3. 

Figure 6.1  MPLD Architecture. 
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6.1.1 MPLD Structure: MLUTs (Multiple Look-up Tables) Array 

Figure 6.1(a) shows the structure of the MPLD. it is constructed by an array of 

reconfigurable cells named the MLUTs (multiple look-up tables). The MLUTs array can 

work in either two operation modes: memory or logic operation mode, by manipulating a 

memory-logic control signal ml_ctrl at an external input port of the MPLD. In memory 

operation mode, a row decoder, column decoder, memory address bus, memory data-in 

bus, and data out selector are used to configure (read out) data into (from) the MLUT in 

the array, via external memory operation IO (input/output) ports. In logic operation mode, 

configured data can function logically in the array, driven by the external logic operation 

input ports, and the function results are out to the external logic operation out ports. 

Figure 6.1(b) shows the structure of the MLUT. Which is constructed by two 

asynchronous SRAMs (SRAM1, SRAM2), two synchronous SRAMs (SRAM3, SRAM4), 

a memory-logic control circuit, and an output control register (OCR). The asynchronous 

SRAMs are used to create combinational logic functions, and the synchronous SRAMs 

are used to create sequential logic functions. The memory-logic control circuit, driven by 

the ml_ctrl signal, controls the memory and logic operation of the MLUT. The OCR is 

used to control the logic data output of the MLUT. 

6.1.2 MPLD Memory Operation Mode 

The MPLD works in the memory operation mode when by setting the value of the 

ml_ctrl signal to 0; this operation mod includes two operation options: the configuring 

operation and the reading operation. In the configuring operation, the data contents in the 

SRAMs and OCR of each MLUT can be configured. In the reading operation, the data 

contents in the SRAMs can be read out.  

Figure 6.2 shows the schematic of the MPLD working in the memory operation mod. 

A we_n signal handles the two operation options; setting the value of the we_n signal to 

0 allows the configuring operation, and conversely, setting it to 1 allows the reading 

operation. 

For the MPLD with a size of X×Y (X columns and Y rows) MLUTs array, there are 

log2X-bit column selection input ports, mlut_x, and log2Y-bit row selection input ports, 

mlut_y, are used to select an MLUT to be configured or read in the array, via respectively 

the column decoder and row decoder, and are used to select the data output of an MLUT 

from the array via the data out selector. The column decoder and row decoder respectively 

generate X-bit column enable signals and Y-bit row enable signals, mlut_c[X-1:0] and 

mlut_r[Y-1:0], to enable an MLUT in the array; where if the values both of mlut_c[i] and 
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mlut_r[j] are 1, the MLUT xiyj (where i ∊ [0, X-1], j ∊ [0, Y-1]) is valid for the configuring 

or reading operation. A memory address input ports provide the memory address bus, mad, 

directly connecting to each MLUT, to access the SRAMs or OCR in the MLUT, for 

specifying a target address for the configuring or reading operation. In the configuring 

operation, a memory data input ports provide the memory data-in bus, mdata_i, directly 

feeding to each MLUT for supplying the data contents configured to the target address of 

the SRAMs or OCR specified by mad. In the reading operation, a memory data out ports, 

mdata_o, via the data out selector, out the data contents at the target address of the SRAM 

specified by the mad, from the MLUT selected by mlut_x and mlut_y. 

Figure 6.2  Schematic of MPLD working in memory operation mod. 

Figure 6.3  Schematic of MLUT working in memory operation mod. 
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Figure 6.3 shows the schematic of the MLUT working in the memory operation mod. 

Where for the SRAM with the size of 2nword×m-bit, the mad are n+3 bits; both the 

mdata_i and the mdata_o are m bits. The highest bit of the mad, mad[n+2], is used to select 

the OCR; the two bits of the mad, mad[n+1:n], are used to specify an SRAM from four 

SRAMs; and the remainder n-bits of the mad, mad[n-1:0], are used to specify the address 

of the SRAM specified selected. The m-bit data contents in a specified target address can 

be configured and read via the m-bit memory data inputs mdata_i and the m-bit memory 

data outputs o_mdata, respectively. 

6.1.3 MPLD Logic Operation Mode 

The MPLD works in the logic operation mode when by setting the value of the 

ml_ctrl signal to 1; in this mode, the configured data can function logically in the MLUTs 

array. Figure 6.4 shows the schematic of the MPLD working in the logic operation mod. 

In the MLUTs array, each MLUT has m-bit logic address inputs Am-1:0 and m-bit logic 

data outputs Dm-1:0, referred to as the m-pair AD interconnects, used for logic operation 

mode. The logic address inputs of the inner MLUTs are connected to the logic data outputs 

of its adjacent MLUTs. The logic address inputs and logic data outputs of the outermost 

MLUTs are connected to the logic operation IO (Input/Output) ports of the MPLD device. 

Figure 6.4  Schematic of MPLD working in memory operation mod. 
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SRAM has the 2m/2word×m-bit size accessed by m/2-bit address inputs and m-bit data 

outputs. The low-order m/2-bit address inputs, Am/2-1:0, are shared by SRAM1 and SRAM3, 

and the high-order m/2-bit, Am-1:m/2, are shared by SRAM2 and SRAM4, respectively. An 

address transition detector (ATD) circuit is put into the address inputs of the asynchronous 

SRAM to detect the value changes coming from the data outputs of its adjacent MLUTs 

at high speed for combinational logic operation. A logic output control circuit controls 

the logic data outputs of MLUT by using an m-bit OCR, OR gates, and EOR gates. 

Figure 6.5  Schematic of MLUT working in memory operation mod. 

Figure 6.6  ATD circuit. 
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the AISU via a signal atdin_en and the AOSU via a signal atdpulse. When the ACDU detects 

that no address change occurs, it generates an enable signal atdin_en to enable the D-latches 

in the AISU to switch the address input of the MLUT (e.g., A0 to A3) and performs signal 

change detection for them. Further, if the ACDU detects an address change, a pulse signal 

is generated on atdpulse to trigger D-FlipFlops in the AOSU to switch the address input 

(A0~A3) of the MLUT to the address input (a10~a13) of the SRAM. In addition, atdce_n 

and atdclk signals will be output to drive the SRAM. 

Figure 6.7  Functional operation of logic output control circuit. 

Figure 6.7 shows the functional operation of the logic output control circuit. The Ck 

of the OCR controls the logic data output of the MLUT Dk, as an input to an EOR gate to 
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logic functions can be implemented in the MLUT for its logic inputs, such as common 
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logics like OR, NOR, AND, NAND, INVERTER, and wiring. The most important role 

of the OCR is to control the output logic function of the MLUTs in the logic mode without 

changing the contents of the truth table back to the memory mode. 

In such architecture, each MLUT can work in either memory or logic operation 

mode. In memory operation mode, users can access (read/write) data as a regular memory 

block. When the MLUT is used as reconfigurable computing, first it is needed to put the 

MPLD in the memory operation mode to write the truth table of the logic function into 

the corresponding SRAMs, then, switch the device to the logic operation mode. 

6.2 MPLD Work Principle 

Figure 6.8  Logic configuration in a single MLUT. 

Figure 6.8 shows an example to configure logic gates and wires in an MLUT. Here 
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we use two asynchronous SRAMs to configure an AND gate, an OR gate, and a wire into 

SRAM1, an XOR gate, a wire, and an INVERTER into SRAM2. We choose the address 

A0 and A1 of MLUT as the AND gate’s inputs, A2 and A3 as the OR gate’s inputs, A4 and 

A5 as the XOR gate’s inputs, A7 as the INVERTER’s input, the data output D0, D1, D2, D4, 

D5, and D6 as the output of the AND gate, OR gate, wire A3 → D2, XOR gate, wire A6 → 

D5, and INVERTER, respectively. We represent the AND, OR logic, and the wire A3 → 

A2 in the truth table1, the XOR logic, wire A6 → D5, and the INVERTER in the truth 

table2. In memory operation mode, we write the truth table1 and truth table2 into the 

SRAM1 and SRAM2, respectively. Since the data outputs of SRAMs are connected to 

each other (by OR gate) and controlled by the OCR. We need to set the value of the 

remaining data outputs of SRAMs to all-zero and the OCR to all-zero. In logic operation 

mode, the MLUT will execute the configured logic and wires as a combinational logic 

block. 

Figure 6.9 shows an example to configure a logic circuit in two MLUTs. The circuit 

has two inputs a and b, two internal signal lines c and d, and an output e. First, the logic 

partition is performed to divide the circuit into two sub-logics. Then, determining the 

address input and data output lines of the MLUTs according to each sub-logic (e.g.: a → 

A0, b → A1, c → D5, and d → D4), and computing the truth tables of the sub-logics. Finally, 

writing the truth tables in the SRAMs within the MLUTs. 

Figure 6.9  Configure a logic circuit in two MLUTs. 
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Chapter 7 

7. Reliability issue in MPLD 

As a novel type of programmable logic device under development, and given its 

promising features of low production cost, reduced power consumption, minimal delay, 

fast data processing, and high flexibility, the MPLD is poised to revolutionize various 

applications, including IoT and AI edge devices. However, it is crucial to acknowledge 

that the MPLD’s reliability can potentially be compromised by manufacturing defects 

during the production phase and aging in the field use phase. The implications of 

reliability degradation can impede the practical use of MPLD. Therefore, it becomes 

paramount to prioritize the resolution of reliability concerns to ensure the long-term 

dependability of the MPLD device. By addressing these challenges head-on, we can 

confidently unlock the full potential of the MPLD and enable its seamless integration into 

a wide range of cutting-edge technologies. 

This chapter introduces the factors that affect the long-term reliability of MPLD in 

the production phase and the field use phase, respectively. 

The rest of this chapter is organized as the following: Section 7.1 introduces the 

reliability issues caused by manufacturing defects during the production phase of the 

MPLD, with the focus revolving on interconnection defects between MLUTs. Section 7.2 

describes reliability issues caused by aging when MPLD is operated in the field, focusing 

on ATD circuits in MLUTs that are sensitive to aging. Finally, the chapter concludes in 

Section 7.3. 

7.1 Manufacturing-Defects-caused Reliability Issue 

In the production phase of the MPLD, as depicted in Figure 7.1, a multitude of 

defects would be present in the SRAM memory of the MLUT. While conventional 

memory testing methods can address these memory defects, however, there are also 

numerous defects that would arise between MLUTs, particularly in the form of 

interconnect defects that occur at the logic address input lines and logic data output lines 

of MLUTs. These interconnect defects encompass problems like shorts, bridges, and open 

circuits, all of which can lead to significant losses in yield and a decline in the reliability 

of the MPLD. Therefore, the focus of this study is placed specifically on tackling the 

interconnect defects that occur at AD interconnect between MLUTs. 
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Figure 7.1  Manufacturing defects in MPLD. 

Interconnect Defects 

As described in Section 6.1.2 of Chapter 6, the address inputs of a target MLUT 

come from the data outputs of its adjacent MLUTs. A defect at the AD interconnect would 

change the value of the address inputs of MLUTs, which cause access errors and results 

in logic faults in the configured circuit. 
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readout and the OR gate will output 0 (D5: 0). If there is a short interconnect defect 

between the supply and the address input A0 of the MLUT, which will fix the value of A0 

at logic 1. In this case, the normal address of all-zero 00000000 will be changed to 

00000001, which causes an access error where the content of 0010000 at the address 

00000001 is read out, thus the output of the OR gate D5 will output 1. 

Figure 7.2  Interconnect defect causes logic fault in configured circuit. 
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7.2 Field-Aging-caused Reliability Issue 

When the MPLD works in the field for a long term or under a severe environment, 

various aging phenomena such as HCI (hot carrier injection) and BTI (bias temperature 

instability) [50][51] would cause delay degradation that threatens the long-term reliability 

[52] of the MPLD. As described in Chapter 6, the MPLD is composed of a large number 

of MLUTs arranged in an array, and each MLUT is placed independently in the MPLD. 

During the operation of the MPLD, as shown in Figure 7.3, it is considered that the 

progress of the aging at each single MLUT is different. When configuring a logic circuit 

into the MPLD, the progress of aging at the often-used MLUTs would be faster which 

causes more extra delay. As the aging progresses, the variety of aging-induced delays at 

MLUTs would affect the performance of the configured logic circuit, and even worse, the 

delay at the MLUTs with faster aging progression could cause a sudden system failure.  

Figure 7.3  Aging progresses in MPLD. 
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SRAMs use the ATD circuit to at high speed detect the input address change to execute 

asynchronous operations. The ATD circuit is extremely sensitive to the delay variation. 

The aging phenomena like HCI and BTI would increase the threshold voltage of the 

transistors in the ATD circuit, which could slow down the switching speed [53] and might 

cause false detection of the address change.  

As demonstrated in Figure 7.4, the ATD circuit will generate an atdpulse signal once 

detected any value changes in the address inputs (A0:3) of MLUT and switches A0:3 to the 

address inputs (a10:3) of the asynchronous SRAM1. Suppose that 01010 is applied to A0 

at time t0t1t2t3t4, respectively. When a transition occurs at A0, the ATD must detect the 

value change and transfer the transition to a10 in a very short delay. Aging-induced delay 

at the ATD logic would generate an anomalous atdpulse signal to switch the A0 to a10, 

which causes false detections for the A0 at t2, t4 and result in a10 being 01111 at t0t1t2t3t4. 

Figure 7.4  Aging caused ATD detection error. 

7.3 Conclusions 

In the production phase of the MPLD, there would be many kinds of defects exist in 

the SRAM memory of the MLUT. For these memory defects, conventional memory 
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The aging progress in the MLUTs array should be different. The often-used MLUTs 

would have a faster aging speed which means the aging-induce delay would be large. The 

variations of aging-induce delay would affect the performance of configured logic circuits 

and even cause a system failure, which would threaten the in-field reliability of the device. 

Therefore, from this chapter, two important items can be put forward: 

To guarantee the long-term reliability of the MPLD, the 

1) During the production phase, it is necessary to perform high-quality tests for the 

interconnect defects on the logic address input lines and logic data output lines of the 

MLUTs. 

2) In the field use phase, it is necessary to employ an aging monitoring approach to 

measure the aging-induced delay variations in the MLUTs. 

To address the above two items, a test method for identifying interconnect defects 

is proposed in Chapter 8. A delay monitoring method to measure the aging-induced delay 

of the MLUTs is proposed in Chapter 9. 
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Chapter 8 

8. Interconnect Defect Test for MPLD 

In order to improve the yield and guarantee the reliability of the MPLD device, 

extensive production tests with high quality are required to detect as many manufacturing 

defects as possible that exist in the SRAMs and the AD interconnects between MLUTs. 

The former defects can be tested by conducting the existing test technologies of SRAM 

memory [55][56]. For the latter, we have analyzed the interconnect fault models including 

the stuck-at faults and bridge faults at the AD interconnects between the MLUTs, and 

proposed the test approaches for detecting the stuck-at fault and bridge fault, in [57][58]. 

Besides fault detection, fault diagnosis is also known to play an important role in 

improving the yield and reliability of products. In manufacturing, identifying the location 

of the interconnect faults in the MLUTs array is beneficial to improving the process. In 

addition, when the MLRD is put to actual use in the field, identifying the interconnect 

fault is helpful to avoid configuring the logic into a faulty MLUT block for high reliability. 

The fault diagnosis for locating the interconnect fault in the FPGA device has been 

investigated deeply [59][60]. In [61] a universal fault diagnosis technique is presented for 

locating the interconnect fault in the CLBs array of an FPGA device. This method can 

identify all faulty points in the CLBs array through two steps: the horizontal diagnosis 

and the vertical diagnosis. For the MPLD device constructed by the MLUTs array, the 

basic idea presented in [61] would be also available to identify the AD interconnect faults 

between the MLUTs. However, implementing the horizontal and vertical diagnosis in 

MPLD must be considered carefully, because the interconnects between MLUTs are un-

reconfigurable. 

This chapter arm to present the test method to identify the AD interconnect faults 

between MLUTs of the MPLD device, for improving the manufacturing process and 

voiding a faulty MLUT block for high reliability when the MPLD is put to practical use. 

The rest of this chapter is organized as follows: Section 8.1 reveal the interconnect 

faults models including stuck-at and bridge faults between MLUTs in MPLD. Section 8.2 

present the test method to identify the interconnect faults and deals with the generation 

of data for testing. Section 8.3 shows the results of the logic simulations for evaluating 

the proposed test method. The proposed methods are discussed in Section 8.4. Finally, 

Section 8.5 make concludes this chapter. 
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8.1 Interconnect Fault Models in MPLD 

This section scrutinizes the two primary types of faults resulting from interconnect 

defects between MLUTs, namely stuck faults and bridged faults. These interconnect faults 

lead to the alteration of the value of the logic address input of the MLUT, and have the 

potential to compromise the normal functioning of the logic circuitry configured in the 

MLUT. As a consequence, these interconnect faults may cause the generation of 

erroneous logic outputs at the value of the logic data output of the MLUT. 

8.1.1 Stuck-at Interconnect Faults 

A stuck-at fault that occurs at the AD interconnect between the MLUTs in the MPLD 

is referred to as a stuck-at interconnect fault. This type of fault may arise due to the 

presence of an interconnect defect such as a short between the ground or supply and the 

AD interconnect. As a result of this defect, the logic address input of the MLUT becomes 

fixed at either logic 0 or 1, which can significantly impact the normal functional operation 

of the MLUT. The presence of a stuck-at interconnect fault could lead to incorrect logic 

outputs being produced at the value of the logic data output of the MLUT. This issue, if 

left unaddressed, could ultimately cause significant damage or malfunction of the MPLD. 

Therefore, it is crucial to promptly identify and resolve any instances of stuck-at 

interconnect faults to ensure the continued reliable performance of the MPLD. 

Figure 8.1 depicts the behavior of stuck-at interconnect faults, and in the event of a 

stuck-at occurring at M1D5→M2A5, the M2A5 value would be fixed to 1 or 0, depending 

on whether a stuck-at-1 or stuck-at-0 occurs. 

 

Figure 8.1  Stuck-at interconnect fault models. 
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in either a wired-OR (OR-bridge) or wired-AND (AND-bridge) logic function depending 

on the utilized logic circuitry. The former is referred to as OR-bridge interconnect fault 

and the latter as AND-bridge interconnect fault. An OR-bridge interconnect failure causes 

shorted AD interconnects to be OR-ed together, and the output value of the OR-ed is 

assigned to each of the shorted AD interconnects. Similarly, an AND-bridge interconnect 

failure causes shorted AD interconnects to be AND-ed together, and the output value of 

the AND-ed is assigned to each shorted AD interconnect. Therefore, bridge interconnect 

faults caused by such an interconnect defect would also change the value of the logic 

address input of the MLUT, which also has a significant impact on the normal functional 

operation of the MLUT. Therefore, it is also crucial to promptly identify and resolve any 

instances of bridge interconnect faults to ensure the continued reliable performance of the 

MPLD. 

Figure 8.2 demonstrates the behavior of bridge interconnect faults. In the event of a 

bridge occurring between M1D5→M2A5 and M1D4→M2A4, an AND-bridge interconnect 

fault would cause a faulty value of 0 at M2A5 (M2A4) when M1 outputs logic 1 (0), 0 (1) at 

M1D5 and M1D4, respectively. Conversely, an OR-bridge interconnect fault would cause 

a faulty value of 1 at M2A5 (M2A4) when M1 outputs logic 0 (1), 1 (0) at M1D5 and M1D4. 

 

Figure 8.2  Bridge interconnect fault models. 
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However, identifying the location of faults is crucial for improving the manufacturing 
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For programmable devices, Prior research on fault localization for FPGAs has been 

conducted and is discussed in [59][60][61]. These studies proposed sophisticated methods 

for fault localization in FPGAs, with [61] presenting a universal fault diagnosis technique 

that can locate interconnect faults for the CLBs array of an FPGA. This method utilized 

a two-step horizontal and vertical diagnosis process to locate all faulty points for the 

CLBs array. Although the basic idea in [61] is applicable to the MPLD constructed using 

the MLUTs array, the interconnects between MLUTs are unconfigurable, unlike FPGAs. 

Therefore, careful consideration should be given to implementing the horizontal and 

vertical diagnosis in MPLD. 

In this study, we present a novel test method for detecting and locating faults caused 

by AD interconnect defects, including stuck-at and bridge faults. Our approach is based 

on the fault detection idea presented in [57] and the fault localization idea in [61]. By 

building on the previous research, we aim to improve fault detection and localization in 

MPLDs and contribute to the advancement of manufacturing processes for these devices. 

8.2.1 Test Strategy for Fault Detection and Location 

Interconnect Fault Detection Idea. Since the logic address inputs of an MLUT come 

from the logic data outputs of its neighbor MLUTs, the logic data flow in MPLD expresses 

as the following: 

external input → [ address → data → address → data → … ] → external output. 

Where the data indicate the data configured in an MLUT, and the address before a 

data indicate the logic address inputs of the MLUT that stores the data. A fault at the AD 

interconnect can cause a change of the value at the logic address input that would access 

a different content of the data configured in the MLUTs and in turn may result in different 

output values than fault-free at the logic data outputs of the MLUT, and ultimately, may 

produce incorrect values to the external logical output ports of the MPLD. Therefore, the 

idea of the test method presented in [57] for detecting the interconnect faults of MPLD, 

is to configure the internal test data into the SRAMs of MLUTs, apply the external test 

data to external logic input ports, and observe the fault effects at the external logic output 

ports of MPLD by performing the logic operation. The two kinds of test data are defined 

in [57] as follows. 

Definition 8.1 Test cube. the internal test data stored in the SRAMs of MLUT in MPLD, 

which can propagate fault excitations and fault effects for AD interconnect faults. 

Definition 8.2 External pattern. the external test data applied to the external logic input 

ports of MPLD as fault excitations to excite AD interconnect faults. 
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The test data flow in MPLD expresses in the following: 

external pattern → [ excitations→ test cube → fault → test cube → … ] → effects. 

Figure 8.3 shows the concept of detecting interconnect faults under this idea. The 

test cubes are configured in the memory operation mode. In logic operation mode, the 

configured test cubes propagate the external patterns (fault excitations) applied to external 

logic input ports to excite the interconnect faults and propagate the fault effects to external 

logic output ports. At the external logic output ports, the fault effects can be observed, 

and the faults are detected.  

Figure 8.3  Interconnect fault detection idea. 
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were presented to cover the detecting of the bridge interconnect faults that were not 

detected in [57]. 
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interconnect faults are as follows. 

Interconnect Fault Location Idea. For fault location of programmable devices, [61] 

presented a universal fault diagnosis technique that can locate interconnect faults on the 

CLBs array of an FPGA. The basic idea of this method is to utilize a two-step diagnosis 

process, step 1 for horizontal diagnosis and step 2 for vertical diagnosis, to locate the 

faulty CLBs in the array. Figure 8.4 shows this universal diagnosis procedure.  

Figure 8.4  A universal diagnosis procedure for FPGA [61]. 

In this diagnosis procedure, the interconnect structures are specially configured. In 

the horizontal (vertical) diagnosis, for the CLBs in a row (column), the output line of each 

CLB except the last one is configured to connect with an appropriate input line of the 
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block as the primary output for output sequence observing; the other input lines of each 

CLB are configured to connect with the remaining I/O blocks as the primary inputs for 

input sequence applying. 

By applying the input sequence to the primary inputs at I/O blocks to perform 

respectively the horizontal and vertical diagnosis to the CLBs array, horizontally and 

vertically to propagate the fault, the faulty CLB can be located by observing the output 

sequences from the primary outputs at the I/O blocks. 
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between MLUTs are unconfigurable, unlike FPGAs. Therefore, careful consideration 

should be given to implementing the horizontal and vertical diagnosis in MPLD. The test 

strategy for locating the interconnect faults in MPLD is described as follows. 

Test Strategy for Interconnect Fault Location The main idea for identifying an 

Input sequence

Error

(a) Step 1, horizontal diagnosis. (b) Step 2, vertical diagnosis.

Input sequence

Error

Faulty CLB
Output 

sequence

Output 
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interconnect fault between MLUTs is to create the proper paths on the MLUTs array 

which can propagate the fault effect across the MLUTs array to the expected logic output 

ports of the MPLD for fault localization. Since the interconnects between MLUTs are not 

configurable like FPGAs, it is impossible to directly configure the connections between 

the interconnect and any specified MLUT or any specified external port. Therefore, to 

create proper propagation paths, an optimal way is to take full advantage of these MLUTs, 

since they are reconfigurable, to realize proper propagation paths by configuring each 

MLUT with the logic function that can properly route the fault effects on the logic address 

inputs to the expected logic data outputs. The routing logic in each MLUT navigates the 

propagating of fault effects like a map, as defined in the following. 

Definition 8.3 Rout map. a logic function configured in the MLUT that can properly 

propagate the fault effects on the logic address inputs to the expected logic data outputs. 

A simple type of rout map is the wiring logic. For an MLUT with m-pair AD 

interconnects (m-bit logic address inputs and m-bit logic data outputs), there are mPm = m! 

kinds of wiring patterns to connect the address inputs with the data outputs. Therefore, 

the number Nrm of the wiring-type route map for the MLUT with m-pair AD interconnects 

can be expressed as the following equation. 

Nrm(m) = mPm = m!      (8.1) 

Figure 8.5 shows all 24 route maps to create the data paths between the address 

inputs and data outputs of an MLUT with 4-pair AD interconnects. Where the labeled 1, 

2, and 3 are referred to as horizontal, vertical, and diagonal route maps, respectively. By 

implementing these route maps as test cubes configured into the SRAMs of the MLUTs, 

the test procedure can be realized to locate the AD interconnect faults in MPLD, like the 

horizontal and vertical diagnosis processes for FPGAs proposed in [61]. 

Figure 8.5  Route maps for an MLUT with 4-pair AD interconnects. 

Figure 8.6 shows the testing mechanism under route maps to locate an interconnect 

fault. The (a) and (b) represent the testing under the horizontal route map and vertical 

route map, respectively. From these two testing processes, we can observe the fault effect 

from two different external output ports, and obtain two different fault propagation paths, 

1

2

3
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FP(1) and FP(2). Via the intersection of obtained fault propagation paths, the fault location 

can be identified.  

Figure 8.6  Testing mechanisms under route maps to locate an interconnect fault. 

For the stuck-at faults in any AD interconnects of the MLUTs array, configuring 

either the horizontal route map or the vertical route map into the MLUTs would detect all 

faults and identify the location of the faults by configuring the two maps in order. For the 

bridge faults, an additional diagonal route map is considered necessary. The procedure of 

the proposed test method based on the route map is as follows. 

Test Procedure 
Definitions: 

• Nrm: number of route maps, it can be calculated by equation 8.1. 

• rmi: route map i; i∈ [1, Nrm]. 
• TC(i): test cubes implementing rmi. 

• NFE
(i): number of observed fault effects under rmi. 

• FPk
(i): fault propagation path k obtained under rmi; k∈ [1, NFE

(i)]. 

• FP(i): fault propagation path set under rmi. 

• Floc: fault location 

 

Process: 

(1) Test under rmi for i∈ [1, Nrm]: 

(a) Configure TC(i) into each MLUT to create rmi. 

(b) Apply external patterns to the input ports of MPLD. 

(c) Observe fault effects. If NFE
(1) == 0, end testing (fault-free). 

(d) Obtain the fault propagation path set: 

FP(i) = ⋃ FPk

(i)NFE
(i)

k=1       (8.2) 

(2) Identify fault location: 

Floc = ⋂ FP(i)Nrm

i=1         (8.3) 

The next section presents the test generation of the test cubes (TC(i) for rmi) and the 

test generation of the external patterns for exciting stuck-at and bridge faults. 

8.2.2 Test Generation 

Test generation of test cubes for implementing route maps Since the MLUT can be 
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allowed to arbitrarily configure the logic by designing and storing the corresponding truth 

tables in SRAMs of the MLUT, the test generation of the test cube for implementing the 

route map to an MLUT is to design the corresponding truth tables that can be stored in 

the SRAMs of the MLUT and are capable of representing the route map. For an MLUT 

with m pairs of AD interconnects (A[m-1:0], D[m-1:0]) and constructed by four 2m/2word×m-

bit size SRAMs, the test cubes, for implementing the horizontal, vertical, and diagonal 

route maps, are generated as follows. 

Where TC(1), TC(2), and TC(3) indicate the test cubes that implement the horizontal, 

vertical, and diagonal route maps, respectively; and rm1, rm2, and rm3 indicate the 

horizontal, vertical, and diagonal route maps, respectively. Each test cube consists of two 

truth tables, truth table 1, and truth table 2, to create the route of the address inputs Am/2-

1:0 and Am-1:m/2 of the MLUT, respectively.  

Test cube generation 

[TC(1) for rm1] 

truth table 1: For the SRAMs to share the low-order address inputs (A[m/2-1:0]) of an MLUT,  

set the contents of the address lines A[m/2-1:0] to  

D[m-1:m/2] = A[0:m/2-1],  

D[m/2-1:0] = all-0. 

truth table 2: For the SRAMs to share the high-order address inputs (A[m-1:m/2]) of an MLUT,  

set the contents of the address lines A[m-1:m/2] to 

D[m-1:m/2] = all-0,  

D[m/2-1:0] = A[m/2:m-1]. 

 

[TC(2) for rm2] 

truth table 1: For the SRAMs to share the low-order address inputs (A[m/2-1:0]) of an MLUT,  

set the contents of the address lines A[m/2-1:0] to  

D[m-1:m/2] = all-0,  

D[m/2-1:0] = A[0:m/2-1]. 

truth table 2: For the SRAMs to share the high-order address inputs (A[m-1:m/2]) of an MLUT,  

set the contents of the address lines A[m-1:m/2] to 

D[m-1:m/2] = A[m/2:m-1],  

D[m/2-1:0] = all-0. 

 

[TC(3) for rm3] 

truth table 1: For the SRAMs to share the low-order address inputs (A[m/2-1:0]) of an MLUT,  

set the contents of the address lines A[m/2-1:0] to  

D[m-1:m/2] = A[m/4:m/2-1] : A[0:m/4-1],  

D[m/2-1:0] = all-0. 

truth Table 2: For the SRAMs to share the high-order address inputs (A[m-1:m/2]) of an MLUT,  

set the contents of the address lines A[m-1:m/2] to 

D[m-1:m/2] = all-0,  

D[m/2-1:0] = A[3m/4:m-1] : A[m/2:3m/4-1]. 

For easier visibility, described above test generation of the test cubes for rm1, rm2, 

and rm3 is also tabulated in Table 8.1. 
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Table 8.1  Test cubes to create route maps for the MLUT with m-pair AD interconnects 

Route Maps Test Cubes 

rm1: horizontal route map TC(1) 

truth table 1 
Dm-1:m/2 = A0:m/2-1 

Dm/2-1:0 = all-0 

truth table 2 
Dm-1:m/2 = all-0 

Dm/2-1:0 = Am/2:m-1 

rm2: vertical route map TC(2) 

truth table 1 
Dm-1:m/2 = all-0 

Dm/2-1:0 = A0:m/2-1 

truth table 2 
Dm-1:m/2 = Am/2:m-1 

Dm/2-1:0 = all-0 

rm3: diagonal route map TC(3) 

truth table 1 
Dm-1:m/2 = Am/4:m/2-1 : A0:m/4-1 

Dm/2-1:0 = all-0 

truth table 2 
Dm-1:m/2 = all-0 

Dm/2-1:0 = A3m/4:m-1 : Am/2:3m/4-1 

Figure 8.7 shows an example of the TC(1) configured in asynchronous SRAMs of an 

MLUT with 8 pairs of AD interconnects. For each MLUT, we write truth table 1 and truth 

table 2 in the SRAM1 and SRAM2, respectively. In truth table 1, the low 4-bit data outputs 

D[3:0] for all addresses are all-0, and the high 4-bit data outputs D[7:4] for each address are 

A[0:3]. In truth table 2, the high 4-bit data outputs D[7:4] for all addresses are all-0, and the 

low 4-bit data outputs D[3:0] for each address are A[4:7]. Because the data outputs D[7:0] of 

SRAM1 and SRAM2 are connected by OR function as illustrated in Figure 6.5, the data 

outputs D[7:0] of each MLUT are the values of address inputs A[0:7]. i.e. the address line 

Ak is connected to the data output line D7-k for each MLUT, thus the construction of the 

propagation path of the fault from the horizontal direction is realized. 

Figure 8.7  Example of test cube in the MLUT for horizontal route map. 

Figure 8.8 shows an example of TC(2) configured in asynchronous SRAMs of an 

MLUT with 8 pairs of AD interconnects. Where, the data outputs D[7:0] for all addresses 

are [0000A0A1A2A3] and [A4A5A6A70000] for SRAM1 and SRAM2, respectively. i.e. for 

each MLUT, the address line Ak in the low 4-bit address (k =0, 1, 2, 3) is connected to the 
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data output line D7-(k+4) and the address line Ak in the high 4-bit address (k = 4, 5, 6, 7) is 

connected to the data output line D7-(k-4), thus the propagation path of the fault from the 

vertical direction is created. 

Figure 8.8  Example of test cube in the MLUT for vertical route map. 

Figure 8.9 shows an example of TC(3) configured in asynchronous SRAMs of an 

MLUT with 8 pairs of AD interconnects. For each MLUT, the address line Ak for k = 0, 

1, 4, 5 is connected to the data output line D7-(k+2), for k = 2, 3, 6, 7, to D7-(k-2), thus the 

propagation path of the fault from the diagonal direction is created. 

Figure 8.9  Example of test cube in the MLUT for diagonal route map. 

 

Test generation of external patterns for exciting AD interconnect facts Since the 

conditions of fault excitation are different for different types of AD interconnect faults, it 

is necessary to consider different external patterns to excite different target faults at AD 

interconnect faults in MPLD. The conditions of fault excitation for different types of AD 
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interconnect faults are listed as the following. 

⁕ Stuck-at-1 (stuck-at-0) interconnect fault excitation condition is that the value 0 (1) 

must be assigned to the interconnect fixed at 1 (0). 

⁕ AND-bridge (and OR-bridge) interconnect fault excitation condition is that the two 

values 01 or 10 must be assigned to the two interconnects bridged. 

Based on the above fault excitation conditions, as shown in Table 8.2, four external 

patterns are applied to the external input ports of MPLD to excite the AD interconnect 

faults and are defined as follows. 

Table 8.2  External test patterns applied to external inputs of MPLD 

Fault Types External Test Patterns 

stuck-at-1 all-zero vector: [0…0] 

stuck-at-0 all-one vector: [1…1] 

AND-bridge walking-zero vector: [1…10⃗ 1…1] 

OR-bridge walking-one vector: [0…01⃗ 0…0] 

Definition 8.4 All-1/0 vector. A sequence of binary values where all elements are 1/0. 

Definition 8.5 Walking-1/0 vector. A sequence of binary values where a single 0/1 

“walks” through a series of 1s/0s. 

The all-zero (all-one) vector is used to excite the stuck-at-1 (stuck-at-0) interconnect 

fault and the walking-zero vector (walking-one vector) vector is used to excite the AND-

bridge (OR-bridge) interconnect fault. Where the sequence length of each vector is equal 

to the number of logic input ports of MPLD, i.e., depends on the size of the MLUTs array. 

Figure 8.10 shows the mechanisms of applying external patterns. The (a), (b), (c), 

(d) show detect a stuck-at-1, stuck-at-0, AND-bridge, and OR-bridge fault, respectively. 

Figure 8.10  Applying mechanisms of external patterns. 

Figure 8.11 and Figure 8.12 show the example of applying the all-zero vector and 

the walking-zero vector to excite a stuck-at-1 (sa1) and AND-bridge (ANDbd) 

interconnect fault in an MPLD with 2×2 MLUTs array, respectively. Figures (a) and (b) 

show the test under rm1 and rm2. The rm1 and rm2 are respectively created by TC(1) and 
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TC(2) stored in SRAMs to propagate the fault effect along with the horizontal and vertical 

routes. When applying the all-zero(walking-zero) vector to the external inputs, the 

sa1(ANDbd) fault is excited, and the fault effect(s) 1(0s) will be propagated to the external 

output ports for observation. As shown in the figures, the route that reaches the external 

output ports is individual; we can thus obtain the fault propagation path set on both the 

rm1 and rm2: FP(1) and FP(2), by observing the fault effects mapped on the external output 

ports. We can locate the fault by equation 8.2, and equation 8.3: 

Floc = FP(1) ∩ FP(2) (for the ANDbd, FP(1) = ⋃ FPk
(1)2

k=1 , FP(2) = ⋃ FPk
(2)2

k=1 ). 

Figure 8.11  Apply all-zero to excite stuck-at-1 fault. 

Figure 8.12  Apply walking-zero to excite AND-bridge fault. 

8.3 Simulation Results 

To verify the proposed test method, we performed logic simulations using ModelSim 

by injecting fault nodes to the netlist of the MPLD we designed. 
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The designed MPLD has 36 MLUTs arranged in a 6×6 array as shown in Figure 

8.13. Its external logic IO ports include 48bit left/right IOs: li[47:0], lo[47:0], ri[47:0], 

ro[47:0] and 20bit top/bottom IOs: ti[19:0], to[19:0], bi[19:0], bo[19:0]. Each MLUT 

has 16-pair AD interconnects (A15:0, D15:0) and consists of four 256word×16-bit SRAMs 

including two asynchronous SRAMs: SRAM1, SRAM2, two synchronous SRAMs: 

SRAM3, SRAM4. 

 

Figure 8.13  MPLD with 6×6 MLUTs array. 

The processes of performing logic simulations are as the following. 

1: We injected a stuck-at-0 (sa0) fault at x2y1A2 (address line A2 of MLUT x2y1) and 

an OR-bridge (ORbd) fault between x4y2A1 and x4y4A3.  

2: In the memory operation mode of the MPLD, we configured the test cubes into 

SRAMs of each MLUT to create the route maps. 

3: In the logic operation mode, we applied external test patterns all-one(walking-

one) vector to external logic input ports (li, ri, ti, bi) to excite the injected sa0(ORbd) fault. 

4: We observed the fault effects at external output ports (lo, ro, to, bo) and located 

fault location through the fault propagation paths of the observed fault effects. 

8.3.1 Verification of Testing to Stuck-at Interconnect Faults 

The simulation results of testing the sa0 fault under the rm1(rm2) are shown in Figure 

8.14(Figure 8.15). Before we enable the fault injection sa_fltinj_en (=0), the MPLD is 

fault-free, and its output ports are all-1. When enabling sa_fltinj_en (=1), x2y1A2 is fixed 
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to 0 and the value 0 of the fault effect is propagated along the horizontal(vertical) route 

to the port ro[6](bo[14]) (=0). The sa0 propagation path set on the rm1 and rm2, FP(1) and 

FP(2), can be determined:  

FP(1) = { li[10] → x1y0A13 → x2y1A2 → x3y0A13 → x4y1A2 → x5y0A13 → ro[6]},  

FP(2) = { ti[14] → x1y0A5 → x2y1A2 → x1y1A5 → x2y2A2 → x1y2A5 → x2y3A2 → x1y3A5 

→ x2y4A2 → x1y4A5 → x2y5A2 → x1y5A5 → bo[14] }. 

The sa0 can be located:  

Floc = ⋂ FP(i)2
i=1  = FP(1) ∩ FP(2) = x2y1A2. 

 

Figure 8.14  Simulation result of the test under rm1 for sa0. 

Figure 8.15  Simulation result of the test under rm2 for sa0. 

 

8.3.2 Verification of Testing to Bridge Interconnect Faults 

The simulation results of testing the ORbd fault under the rm1(rm2) are shown in 

Figure 8.16(Figure 8.17). A bridge fault is injected into the MLUT array by setting 

bd_fltinj_en to 1. The x4y2A1 and x4y4A3 are bridged by the OR logic function:  

x4y4A3
(0→1) = x4y2A1

(=1) = x4y2A1
(=1) ⋁ x4y4A3

(=0) = 1. 

The fault effect value 1s are propagated along horizontal(vertical) route to respectively 

the port ro[13] and ro[31](bo[5] and bo[7]) (=1). The ORbd propagation paths can be 
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obtained: 

FP1
(1)

 = { li[17] → x1y1A14 → x2y2A1 → x3y1A14 → x4y2A1 → x5y1A14 → ro[13] }, 

FP2
(1)

 = { li[35] → x1y3A12 → x2y4A3 → x3y3A12 → x4y4A3 → x5y3A12 → ro[31] }, 

FP1
(2)

 = { ti[5] → x3y0A6 → x4y1A1 → x3y1A6 → x4y2A1 → x3y2A6 → x4y3A1 → x3y3A6 

→ x4y4A1 → x3y4A6 → x4y5A1 → x3y5A6 → bo[5] }, 

FP2
(2)

= { ti[7] → x3y0A4 → x4y1A3 → x3y1A4 → x4y2A3 → x3y2A4 → x4y3A3 → x3y3A4 

→ x4y4A3 → x3y4A4 → x4y5A3 → x3y5A4 → bo[7] }. 

The ORbd can be identified as:  

Floc =  ⋂ FP(i)2
i=1   = ⋂ (⋃ FPk

(i)2
k=1 )2

i=1   = ( FP1
(1)
 ∪  FP2

(1)
 ) ∩ ( FP1

(2)
 ∪  FP2

(2)
 ) = 

{ x4y2A1, x4y4A3 }. 

 

Figure 8.16  Simulation result of the test under rm1 for ORbd. 

Figure 8.17  Simulation result of the test under rm2 for ORbd. 

 

8.4 Discussion 

8.4.1 Test Effectivity for Interconnect Faults 

The proposed test method can detect and locate all single interconnect faults at any 
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AD interconnects. Table 8.3 shows the test effectivity to an MPLD with the size of x×y 

MLUTs (having m-pair AD interconnects) array. For each type of fault, the most number 

of fault lines that might exist in the MPLD is ( (x+1)y + (x-1)/2 )m, and all can be located 

by the proposed test method. Locating the stuck-at (sa) fault only requires two-time 

reconfigurations (config.) and external test patterns (EP); for the bridge (bd) fault, it only 

involves two-time or three-time (depending on the location distribution of the two bridged 

interconnects). 

Table 8.3  Test effectivity for all single AD interconnect faults. 

MPLD size locatable (=total) fault numbers config. (times) EP (times) 

MLUT:x×y 

AD-pair: m 
((x+1)y+

x-1

2
)m 

sa bd sa bd 

2 2 or 3 2 2 or 3 

 

8.4.2 Time Complexity of the Test Procedure 

The time complexity of the test is O(Nmlut), where Nmlut denotes the 

number of MLUTs in the MPLD. The test procedure includes two phases:  

1) Configuration phase: Write test cubes into memory to configure the test 

route map (routing logic) in memory operation mode.  

2) Logic phase: Run the configured logic by applying test patterns to the 

external logic input ports in logic operation mode. 

Let tconf denote the time to configure the test cube into an MLUT, and 

tlogic denote the time to run the configured logic. Nrm represents the number 

of route maps (for stuck-at fault Nrm =2, for bridge fault Nrm = 2 or 3).  

For an MPLD with Nmlut MLUTs, the total test time is: 

ttest = (Nmlut×tconf + tlogic) × Nrm 

Since time tconf and tlogic depend on the memory access speed, which is 

common for all MLUTs, the total testing time is determined by the size of 

the MLUTs array. Therefore, the time complexity of the test is O(Nmlut). 

8.4.3 Test Availability for Multiple Interconnect Fault 

The proposed test method is available for multiple faults at the AD interconnects.  

Definition 8.5 N-faults. N faults, which exist at the different AD interconnects on 

the MLUT array, where N > 1. 

Testing mechanisms of multiple faults:  
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Let, the range of the multiple AD interconnect faults that occur be NF
R, the number 

of faults in the range NF
R be NF, and the number of faulty effects observed on the testing 

under the route map i is denoted by NFE
(i), where i = 1, 2, 3, …, denote the horizontal route 

map, vertical route map, diagonal route map, ..., respectively. 

For N-faults existing at any site on the MLUT array, the fault range can be 

determined by the following equation: 

NF∈NF
R = [max(NFE

(1), NFE
(2)), NFE

(1)×NFE
(2)]               (8.4) 

And they can be detected and located by executing i-times tests with i route maps 

until the following equation holds. 

NF = 𝑁
⋂ FP(i)Nrm

i=1
 , if max(NFE

(1), ⋯, NFE
(i)) == N

⋂ FP(i)Nrm
i=1

       (8.5) 

Floc = ⋂ FP(i)Nrm

i=1  , if max(NFE
(1), ⋯, NFE

(i)) == N
⋂ FP(i)Nrm

i=1
      (8.6) 

For an instance: to identify 3-faults (stack-at-1) at interconnect A, B, and C on the 

MLUT, as shown in Figure 8.18.  

Figure 8.18  Example to identify multiple faults. 

By executing the test under two route maps (1: horizontal route map, 2: vertical 

route map), we can determine the range NF
R of the number of multiple faults NF: 

NFE
(1) = 2,  

NFE
(2) = 2, 

max(NFE
(1), NFE

(2)) = 2, 

NF∈NF
R = [max(NFE

(1), NFE
(2)), NFE

(1)×NFE
(2)] = [2,4], 

FP
(1) = ⋃ FPk

(1)
 

NFE
(1)

k=1 = FP1
(1)
∪FP2

(1)
 = {A,B}∪{C,D} = {A,B,C,D}, 

FP
(2) = ⋃ FPk

(2)NFE
(2)

k=1  = FP1
(2)
∪FP2

(2)
 = {A,C}∪{D,B} = {A,B,C,D}, 

⋂ FP(i)2
i=1  = FP

(1)∩FP
(2)= {A,B,C,D}. 

Since the  

( max(NFE
(1),NFE

(2)) = 2 ) ≠ ( 𝑁
⋂ FP(i)2

i=1
 = 4 ), 

(a) Test under route map 1

D

A

C

B

E

F

G

FP1
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we need to perform the test using route map 3 (diagonal route map):  

NFE
(3) = 3,  

max(NFE
(1), NFE

(2),NFE
(3)) = 3, 

FP
(3) = ⋃ FPk

(3)NFE
(3)

k=1  = FP1
(3)
∪FP2

(3)
∪FP3

(3)
 = {A,G}∪{E,B}∪{F,C} = 

{A,B,C,E,F,G}. 

⋂ FP(i)3
i=1 = FP

(1)∩FP
(2)∩FP

(3) = {A,B,C,D} ∩{A,B,C,E,F,G} = {A,B,C}. 

Then, the 

( max(NFE
(1),NFE

(2),NFE
(3)) = 3 ) == ( 𝑁

⋂ FP(i)3
i=1

 = 3 ),  

we can determine the number of multiple faults and fault locations: 

NF = N⋂ FP(3)3
i=1

 = 3, 

Floc = ⋂ FP(i)3
i=1  = {A,B,C}. 

8.5 Conclusions 

In order to improve the yield and guarantee the reliability of the MPLD device, in 

manufacturing the MPLD, identifying the AD interconnect faults in the MLUTs array is 

beneficial to improving the process. In addition, when the MPLD is put to actual use in 

the field, identifying the AD interconnect faults is helpful to avoid configuring the logic 

into a faulty MLUT block for high reliability. 

In this chapter, we proposed a test method to identify the stuck-at and bridge faults 

at the AD interconnect between MLUTs of the MPLD device. The proposed test method 

consists of two phases: the configuration phase and the logic phase. The configuration 

phase creates the route map in the MLUTs array for fault propagation paths by configuring 

the pre-generated internal test data into the SRAMs of the MLUTs. The logic phase 

applies the pre-generated external test data to the logic external output ports of the MPLD 

to excite the target faults, observe the faulty effects at the external logic output ports of 

MPLD (fault detection), and obtain the fault propagation path set through the observed 

faulty effects (for fault location). The coordinate of the target interconnect fault can be 

determined by performing the two phases under route maps. The main contribution of 

this test method is to address not only the fault detection but also the fault diagnosis of 

MPLD. 

To evaluate the proposed test method, we design an MPLD with a 6×6 MLUTs array 

and perform the logic simulation experiments by injecting the stuck-at and bridge fault 

node to the netlist of the MPLD. The results confirmed the effectiveness of the proposed 

test method which can diagnose the location of the injected stuck-at and bridge fault. 
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The proposed test method can detect and locate all single interconnect faults at any 

AD interconnects. In addition, it is available for multiple faults at the AD interconnects. 

In our future work, we will explore the test generation of the internal test data and 

external data to identify other interconnect faults (such as the open fault, etc.) in the 

MPLD device, and explore the methods such as the design for testability and built-in self-

test to the MPLD device. 
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Chapter 9 

9. Aging monitoring for MPLD 

To improve the reliability of the MPLD device, in Chapter 8, we described the test 

approaches for identifying the production defects referred to as stuck-at and bridge faults 

at the AD interconnects of the MPLD device. On the other hand, when a good MPLD 

device is put actual such as the uses of IoT and AI systems for a long time or works in a 

severe environment, various aging phenomena such as HCI (Hot carrier injection), BTI 

(Bias Temperature Instability) [50], [51] would cause delay degradation that threatens the 

in-field reliability [52] of the MPLD.  

This chapter aims to present a method to periodically detect the degradation state of 

MLUTs in MPLDs operating in the field by monitoring the delay induced by aging. 

The rest of this chapter is organized as follows: Section 9.1 points out the necessity 

of delay monitoring techniques for improving the in-field reliability of MPLD. Section 

9.2 presents the implementation method of the RO-based delay monitor for the MPLD 

device. Section 9.3 performs logic simulation to evaluate the proposed methods. Section 

9.4 discuss the proposed methods. Finally, the chapter concludes in Section 9.5. 

9.1 Delay-Monitoring technologies 

This section points out the necessity of delay monitoring techniques for improving 

the in-field reliability of MPLD. 

Conventionally, the aging-induced extra delay can be relaxed by manufacturing tests 

(burn-in tests or stress tests), redundancy design, or by setting a certain timing margin in 

the operating frequency of the device at the design phase [62], [63]. However, it is 

difficult to optimize the timing margin for a device due to the variations in the fabrication 

process, workload, and operational environment. And there is a pessimistic prediction that 

the timing margin usually results in performance sacrifice although it can improve the 

reliability of the device [63]. 

For an MPLD device, it is composed of a large number of MLUT arranged in an 

array. During the operation, the progress of the aging at each single MLUT is different. 

When configuring a logic circuit into MPLD, the progress of aging at the often-used 

MLUTs would be faster which causes more extra delay. The variety of the aging-induced 

delay at MLUTs would affect the performance of the constructed logic circuit.  
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Commonly, a certain timing margin is pre-designed in the operating frequency of 

the MPLD device could cover the aging-induced delay of the MLUTs during most 

lifetimes. However, as the aging progresses, the delay at the MLUTs with faster aging 

progression would exceed the timing margin earlier which could cause a sudden system 

failure. On the other hand, it is getting difficult to design the timing margin for a device 

due to the variations in the fabrication process, workload, and operational environment. 

Delay-monitoring techniques [62], [64] are one of the effective ways to ensure the 

in-filed reliability of the device, they can measure the delay variation of the circuit 

affected by the process, voltage, temperature (PVT) in real-time by implementing some 

special timing-measurement circuits such as the RO (Ring oscillator) [65], TDC (time-

to-digital converter) [66] into the target device. Figure 9.1 shows the concept of delay 

monitoring. The delay of the device is measured periodically during the in-filed operation. 

When the delay value is getting exceed the timing margin (or a safe delay boundary), an 

early warning/report can be issued to the upper system to avoid a system failure or call 

for maintenance like repair/diagnosis. 

Figure 9.1  Concept of delay monitoring techniques. 

Therefore, it is necessary to the delay monitoring techniques for improving the in-

field reliability of MPLD. 

9.2 Delay Monitoring in MPLD 

This section presents the implementation method of the RO-based delay monitor for 

the MPLD device. 

RO is commonly used as a sensor to monitor the delay variation of a circuit affected 
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by temperature, voltage, process, or aging on the circuit. To measure the delay of a circuit, 

it is effective to implement a RO in the device. In [67][68], the authors proposed an on-

chip digital delay sensor using ROs to monitor the aging-induced delay of application-

specific integrated circuit (ASIC) devices. Additionally, in [69], the authors integrated the 

on-chip digital delay sensor into the field-programmable gate array (FPGA) with the goal 

of enhancing the reliability of logic reconfigurable devices. As a result, we incorporate 

ROs into MPLDs for delay monitoring purposes. 

9.2.1 Ring Oscillator (RO) 

Figure 9.2 shows a general RO structure, a ring circuit composed of a 2-input NAND 

gate in series with an even number of inverters. One of the inputs of NAND is the 

oscillation control signal EN. While setting EN to 0, the RO is initial to a stable state; 

when setting EN to 1, the RO operates in the oscillation mode and generates an oscillation 

signal at a specific frequency. The delay (transmission time) DRO of RO’s entire ring 

routing path is half of the oscillation period TRO of RO; we can calculate it through the 

oscillation number Nosc
tRO within a certain oscillation operation time tRO: 

DRO = 
TRO

2
 = 

tRO

2Nosc
tRO

               (9.1) 

Figure 9.2  Ring oscillator. 

9.2.2 Delay Monitor Design Using RO 

In MPLD, we can deploy RO into specified measurement areas (partial MLUTs or 

all MLUTs) to measure the average delay (local delay or global delay) of MLUTs within 

the area. 

Deploy RO in MLUTs: 

We first specify the measurement area (MLUTs to be measured for the delay), then 

design the RO structure according to the following deployment rules: 

Rule 9.1 RO elements. A NAND gate and an even number of inverters must route 

in series in a ring.  

Rule 9.2 Deployment area. All elements must lie within the measurement area, and 

the ring routing path must pass through each MLUT within rather than outside the area. 

Oscillation signal

EN

Transmission time ( )Ring routing path
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Rule 9.1 is required to satisfy that the circuit can oscillate. Rule 9.2 is required to 

ensure the delay measured is exactly the delay of the measurement area. 

Figure 9.3(a) shows an example of deploying a RO circuit into MLUTs. RO 

elements are placed in the MLUTs to be measured and routed in series in a ring through 

AD interconnects of the MLUTs. We can calculate the average delay DMLUT of the MLUTs 

through the transmission time DRO of the ring routing path and the number NAD of AD 

interconnects passed by the ring routing path: 

DMLUT = 
DRO

NAD

 = 
tRO

2Nosc
tRONAD

       (9.2) 

Figure 9.3  Delay monitor; (a) RO in MLUTs, (b) counter for RO. 

Deploy Counter for RO: 

Here we describe the design of the counter to calculate the oscillation number (Nosc
tRO). 

Versus the conventional counter design composed of synchronous Flip-Flops, in this study, 

we proposed a new counter circuit design that is even more adapted and simpler to 

implement in the MPLD, as shown in Figure 9.3(b). The proposed counter consists of M 

half-adders connecting in series. When setting the RO oscillation mode, pulses can be 

outputted by a signal edge detection gate (here, we used NOR gate) by comparing the 

signals of two neighbor AD interconnects on the ring routing path. The Nosc
tRO, i.e., the 

number of pulses, can be calculated by the counter by performing an addition carry 

operation for the pulses: 
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Nosc
tRO = (OM-1 O1O0)

2
       (9.3) 

The procedure of implementing RO and counter for measuring the delay of MLUTs 

is as follows. 

Implementation Procedure 

Step 1: Select measurement area (MLUTs); 

Step 2: Deploy RO and counter; 

Step 3: Create the truth tables for each MLUT in the area; 

Step 4: Write the truth tables into corresponding MLUTs; 

Step 5: Set the MPLD to logic operation mode; 

Step 6: Set oscillation operation time (EN=1); 

Step 7: Observe the oscillation number (counter outputs). 

9.3 Simulation Results 

To evaluate the proposed delay monitor method, as shown in Figure 9.4, we 

configured a RO with 11 elements (a NAND and 10 inverters) and a counter with 8 half-

adders into the measurement area (MLUTs: x0y0, x1y0, x2y0, x3y0, x4y0) of the designed 

MPLD with 6×6 MLUTs array. We performed a logic simulation experiment using 

ModelSim. 

Figure 9.4  RO and counter in MLUTs to be measured for the delay. 

1: We routed the RO pass through 10 AD interconnects in the measurement area 

(NAD=10). 

2: We set the delay of the ATD circuit for each MLUT to 5.5ns and the overall 

oscillation operation time of the RO to 2000ns (tRO). 

The waveform of the RO oscillation and the counter is shown in Figure 9.5. When 

setting the oscillation control signal to 1, the RO begins oscillating while the counter 

counts the detected pulse until the oscillation control signal becomes 0. The pulse number 
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(RO oscillation number) counted by the counter is 18:  

Figure 9.5  Simulation waveform to measure delay for MLUT. 

Nosc
tRO = (00010010)2 = 18 

Thus, the average delay of MLUTs in the area can be calculated by equation 9.2: 

DMLUT = 
tRO

2Nosc
tRONAD

 = 
2000ns

2×18×10 
 = 5.5̇ns 

Comparing the set delay (5.5ns) of the ATD circuit with the DMLUT (5.5̇ns), the result 

confirms the effectiveness of the proposed delay monitor method. 

9.4 Discussion 

9.4.1 Overhead of Inserting Delay Monitor 

It is worth noting that the proposed delay monitor is configured in the measured 

MLUTs as the truth tables without incurring logical gates and routing costs. The only 

additional overhead is the time cost of configuring the truth tables of the delay monitor 

into the MLUTs. 

9.4.2 Work Scope of Delay Monitor 

The ATD circuit, which detects address changes in the asynchronous SRAM to drive 

the logic operation, is the most sensitive component to the aging-induced delays in the 

MPLD. The proposed delay monitor aims to detect delays occurring in the ATD logic for 

each MLUT. As for the SRAM read/write delay, existing memory delay testing methods 

can be employed to detect it during the memory operation mode of the MPLD, which is 

beyond the scope of this work. 

9.4.3 Locating Abnormal MLUTs 

The proposed delay monitor aims to periodically detect the degradation state of 

MLUTs in MPLDs operating in the field. To detect degraded MLUTs in an MPLD with 

an M×N array of MLUTs, as shown in Figure 9.6, the total number and location of delay 

monitors are determined according to the detection method described below. 
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Figure 9.6  Delay-monitors deploying method. 

(1) row detection: M delay monitors are configured in M rows (r1, ..., rM) to detect 

the average delay of MLUTs in each row (dr1, ..., drM). 

(2) column detection: N-1 delay monitors are configured in N columns (c1, ..., cN), 

where two adjacent columns are required to configure a delay monitor. This detects the 

average delay of MLUTs in two adjacent columns (dc1,c2, ..., dcN-1,cN). 

(3) locating degraded MLUTs: MLUTs in the intersection region of rows with delays 

in M rows and columns with delays in N rows. For example, the MLUT at row 3 and 

column 3, is determined by dr3, dc2,c3, and dc3,c4. 

In this setup, row detection and column detection are configured simultaneously and 

work in parallel. 

For achieving a certain or higher level of in-field reliability, we have examined this 

issue during our research, such as how to detect the details of the delay for each degraded 

MLUT. It is a challenging task that may require more complex models to build a finely 

designed monitor. This will be the subject of our future research. Nevertheless, locating 

abnormal MLUTs with large delays still represents a significant contribution to logic 
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designers as a reference. 

9.5 Conclusions 

In this chapter, to detect and report the aging state of MPLD devices during field 

operation, we have proposed an approach that uses a ring oscillator circuit for monitoring 

the aging by periodically measuring the delay of MLUTs in the field during MPLD’s 

operation.  

To configure the ring oscillator circuit into MPLD, we have proposed the design and 

implementation method of a ring oscillator circuit suitable for the structure of the MPLD 

device and designed a counter to store the RO oscillation frequency.  

The proposed method can measure the Global Delay (of all MLUTs) and the Local 

Delay (of specified MLUTs) in the MPLD device.  

To evaluate the proposed methods, we designed an MPLD with a 6×6 MLUTs array 

and performed logic simulations by injecting delay into MPLD. From the results of the 

logic simulation performed as an evaluation experiment, we confirmed that the proposed 

method can effectively measure the delay of the MLUT with a very small error.  

In our future work, we will make a quantitative analysis of the aging phenomena, 

develop a precise simulation method as well as an on-chip test method, and explore the 

methods to determine the total number and locations of delay monitors for achieving a 

certain or higher level of in-field reliability. 
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Part IV: Application of MPLD 
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Chapter 10 

10. A Solution to Implement Neural Networks in MPLD 

With the rapid spread of artificial intelligence (AI) applications, the neural networks 

(NNs) algorithm has achieved significant successes at the machine learning domains 

including computer vision [70], speech recognition [71], and robotics [72]. In a practical 

intelligence application, NNs usually consist of millions of parameters involving 

multiply-accumulation operations, which requires high-performance computing 

equipment. In addition, with the rapid spread of IoT (Internet of Things) technology in 

both the industrial and consumer fields, NNs are widely applied into various edge 

terminals, e.g.: battery-powered mobile devices, robots, electric vehicle etc.. In such 

systems, real-time processing, low power consumption and low cost are the main 

concerns with the computing device used for NNs [73]. In order to achieve high 

performance and energy efficiency for AI application, hardware design for NNs is gaining 

great attentions [74]. 

Over the past few years, the strategy of hardware design for NNs application can 

mainly be classified into three types: 1) Use GPUs (Graphics Processing Units) to 

accelerate NN training. 2) ASICs (Application Specific Integrated Circuits) design for 

NNs. 3) FPGA-based accelerators of NNs. The GPUs apply single-instruction-multiple-

data in parallel processing that can significantly speed up the training process of 

complicate NNs [75][76][77][78], however, usually accomplished with huge energy cost 

(e.g.: NVIDIA A100 Tensor Core GPU, the thermal design power (TDP) is 400W [79]) 

that is not suitable for edge device. The ASIC design for NNs is another key strategy for 

achieving high performance and energy efficiency for NNs application, such as Google 

edge TPU (tensor processing unit), NVIDIA Xavier, and NovuTensor achieved good 

energy efficiency [80]. However, the extremely high development cost might obstruct the 

application of ASICs for IoT system. Compared to ASIC design, reconfigurable devices 

such as FPGAs allow the user to reprogram the functionality and routing in field that can 

provide a flexible and scalable platform for implementing the NNs application with high-

performance and low power consuming [81], however, the large area, delay and power 

issues due to the programmable interconnect resources prevent the use of FPGAs, and high 

cost is not friendly to the end user of edge devices.  

In MPLD, functions (arithmetic logic, wiring logic) are expressed in the form of truth 

tables pre-stored in the SRAMs of MLUT. Since large amount of interconnect resources 
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like in FPGA are not needed anymore, a large number of SRAMs can be integrated that 

provides a chance to implement large and complex functions in a single MPLD by truth 

tables, such like a LUT-based neuron activation function [82] and the LUT-based Neural 

Networks (L-NNs) instead of implementing an accelerator in FPGA (due to the limited 

memory size of LUT). Since the LUT-based neuron model [82] only operates memory, it 

thus would work much faster and low power than a traditional accelerator which has to 

perform the multiply-accumulation operations every cycle even though with acceleration 

circuits. Therefore, we believe that MPLD would be a promising alternative edge AI 

device for NNs application.  

On the other hands, due to the special structure of MPLD, implementing a neural 

network with fully-connected structure is an impossible task. There is an issue to 

implement an NNs application in MPLD, it needs a newly designed NN structure to adapt 

to the MPLD special structure. 

In this chapter, we suggest a LUT-based neuron model to realize neuron functions 

in truth table and propose a novel neural network structure named MNN (MPLD-based 

Neural Network) to adapt the special connection structure of MLUTs for implementing a 

neural network into MPLD. To confirm the LUT-based neuron model, we design a logic 

simulation experiment in an MPLD with 6×6 MLUTs array. The simulation results 

confirm the feasibility of LUT-based neuron function expression are the same as the 

results of the theoretical analysis. To evaluate the effectiveness of MNN, we also perform 

an experiment by training MNN with the MNIST dataset. The experimental results show 

that the MNN can get almost the same accuracy and loss for MNIST data recognition 

compared to a fully-connected neural network (FNN).  

The main contributions of this study are as follows. 

1) A LUT-based neuron model is introduced. 

2) A novel network structure named MNN is proposed. 

The chapter is organized as follows. Section 10.1 suggests a LUT-based neuron 

model. Section 10.2 proposes an MNN (MPLD-based Neural Network) for implementing 

the NNs application into an MPLD device and describes the characteristics and wiring 

connection way of the proposed MNN in MPLD device. Section 10.3 performs two 

experiments for confirming the LUT-based neuron model and evaluating the effectiveness 

of the proposed MNN, respectively. Section 10.4 concludes the chapter.  
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10.1 LUT-based neuron model 

In this section, we suggest a LUT-based neuron model to realize neuron functions 

in truth tables in MPLD. 

According to the operating principle of MPLD, any functions (including wiring 

logic) can be written into the MLUT in the form of a truth table that provides a new 

computing model for neuron activation functions in MPLD. In addition, a large number of 

MLUTs make it possible to implement a complete LUT-based NN into a single MPLD 

device. 

Figure 10.1 shows a basic neuron of neural network (NN). The neuron function is 

expressed in formula: u = ∑ wi×xi
N
i=0 +b, y = f(u), where f is an activate function for u. To 

compute the value of y for u, a traditional approach has to perform multiply-accumulate 

operation and activate operation in many cycles and requires large memory (buffer) to 

store the weights and input/output vectors. 

Figure 10.1  A NN neuron. 

Figure 10.2  LUT-based neuron model in a single MLUT. 

The main idea of this study is that a neuron function can be expressed in a truth table 

in MPLD. Figure 10.2 (a) shows an example to implement four neurons function in one 

MLUT. The correspondence between inputs x and outputs y of the neurons can be 

computed by pre-learning and formed in a truth table in the MLUT between the address-

inputs and the data-outputs. Therefore, as shown in Figure 10.2 (b), when calculate the 

output y for a given input pattern x, it only needs to access the memory and readout the 
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prestored results of y. It is thus much faster and low power than a traditional accelerator 

which has to perform the multiply-accumulation operations every cycle even though with 

acceleration circuits. 

Note that here we are discussing the binarization forms of x and y. For specific 

binarization methods of x and y, existing binarization methods are utilizable [83]; we will 

also conduct future research to explore other binarization methods valid for MNN. 

10.2 MPLD-based Neural Network (MNN) 

In this section, we explain and propose an MNN (MPLD-based Neural Network) for 

the aim of implementing a neural network into an MPLD device. we also describe the 

characteristics of the MNN and introduce the implementation way of the MNN neurons in 

MPLD.  

10.2.1 A sparse neural network: MNN 

A fully connected neural network (FNN) cannot be constructed directly into the 

MPLD. As shown in Figure 10.3, all neurons of each layer are fully connected with the 

preceding layer. For the MPLD structure, as shown in Figure 10.4, each MLUT (e.g., 

MLUT5) can only connect up to four adjacent MLUTs (e.g., MLUT1, MLUT2, MLUT6, 

MLUT7), and the data outputs of other MLUTs (e.g., MLUT3, MLUT4) cannot be 

connected to the MLUT (MLUT5). Therefore, it is impossible to construct a fully 

connected NN into the MPLD due to such connection limits between MLUTs. 

Figure 10.3  A fully connected NN. Figure 10.4  Connection limit in MPLD. 

To implement a NN into MPLD, we propose a sparse neural network based on the 

MPLD structure named MNN (MPLD-based Neural Network) in this study. As shown in 

Figure 10.5, according to the structure of MPLD, we suggest sparsely connecting the 

neural network in units of MLUTs in MPLD. We call such a sparse neural network based 
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on the structure of MPLD an MNN (MPLD-based Neural Network), and its network 

structure is shown in Figure 10.6. The proposed MNN has inward gradual convergence 

and association characteristics to adapt the connection structure of MLUTs. In the input 

layer, the data input of each MLUT is independent of another MLUT, and the feature of 

these data will be converged and associated in the middle layer. 

Figure 10.5  Sparse connection in unit of 
MLUT in MPLD. 

Figure 10.6  Proposed MNN (MPLD-
based Neural Network) 

Figure 10.7 shows an example of using MNN for a very simple image recognition 

application. Where, a 4×4 bit image of O and Z is given respectively, and the vector of 

each row (4bit) is applied to the address input of an MULT at the first column of the 

MLUT array, respectively. Throughout the hidden layers, the feature of each row vector 

will be converged inwardly and gradually, and associated until the output layer, where all 

features will be extracted and recognized. 

Figure 10.7  Feature extraction in MNN. 

10.2.2 Implementing MNN into MPLD 

Figure 10.8 shows the wiring method to connect the neurons between adjacent layers 

in an MLUT array where each MLUT has 16 bits AD lines. The output of each neuron 
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function configured in an MLUT will be read out and propagated to the following adjacent 

MLUT through only one AD (address-data) line. Then, the value of the address input from 

the preceding MLUT will be connected to the inputs of all neurons by configuring the 

branch logic (or wiring logic), e.g.: AD11 in MLUT x0y0 of Figure 10.8. Each neuron 

configured in an MLUT can connect to at most 8 neurons which are configured in the 

preceding adjacent MLUTs. 

Figure 10.8  MNN wiring connection way in MPLD. 
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10.3 Experimental Results 

In this section, we describe the performed the experiments. First, we design an 

experiment to confirm the LUT-based neuron model as described in section 10.1. Then, 

we also show the experimental results to confirm the effectiveness of the proposed MNN 

in the section 10.2 by the training using the MNIST dataset. 

10.3.1 Confirm LUT-based Neuron Model 

As shown in Figure 10.9, here a size of 4×4×4 NN is given, and each layer (Hidden-

layer1, Hidden-layer2, Output-layer1) is constructed to MLUT x0y1, MLUT x1y0, MLUT 

x2y1, respectively. For simplicity in this experiment, for this NN we using the Heaviside 

Step (Binary step) as an activation function to calculate each neuron: 

𝑓(𝑢) =  {
1           , 𝑢 ≥ 1
0           , 𝑢 < 1

 

𝑢 =∑𝑤𝑖 × 𝑥𝑖

𝑁

𝑖=0

+ 𝑏 

Figure 10.9  A size of 4×4×4 NN constructed in 3 MLUTs. 

As shown in Figure 10.10, we give the value of the weights for each layer and assign 

the value of b to 0. Each layer of given weights NN is calculated to a truth table stored in 

an MLUT to realize the neuron functions. Where, such as there are inputs 01010000, 

through the MLUT x0y1, MLUT x1y0, MLUT x2y1, theoretically the outputs of Hidden-

layer1, Hidden-layer2, Output-layer is 0011, 1011, 0111, respectively. 
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Figure 10.10  LUT-based neuron model for the size of 4×4×4 NN. 

 

Figure 10.11 shows an performed logic simulation experiment in an MPLD with 16-

bits 6×6 MLUTs array. the experimental result shows that the operating results of the 

LUT-based neuron model in MPLD are the same as the results of the above theoretical 

analysis. 

Figure 10.11  Experimental results for the LUT-based neuron model. 

 

Inputs Outputs1 Outputs2 Outputs3MLUIT x0y1 MLUIT x2y1MLUIT x1y0

Inputs Outputs1 Outputs2 Outputs3MLUIT x0y1 MLUIT x2y1MLUIT x1y0
    

    

  00

    

    

    

1101

    

    

    

1110

    

 =          =      =     

Hidden-layer1 Hidden-layer2 Output-layer

Hidden-layer1 Hidden-layer2 Output-layer

In
p

u
ts

H
id

d
en

-l
ay

er
1

H
id

d
en

-l
ay

er
2



102 

10.3.2 Confirm Proposed MNN 

In this experiment, for comparing with FNN, we first designed the same size of FNN 

and the MNN. we used the MNIST dataset (60,000 handwritten number training images 

and 10,000 test images.) to make training the MNN and the FNN, respectively. Figure 

10.12 shows the training results in 50 epochs,  the results show that the MNN is an 

effective neural network that can get well accuracy and loss as same as the FNN. Figure 

10.13 shows the MNN has been 150 epochs trained, and it can obtain the training accuracy 

and testing accuracy up to 0.99 and 0.96, respectively. 

Figure 10.12  MNN and FNN training result in 50 epochs. 

Figure 10.13  MNN training result in 150 epochs. 
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10.4 Conclusions 

In this chapter, we suggest a LUT-based neuron model to implement a NNs into 

MPLD device. The NN neuron’s operation can be calculated into truth table form pre-

stored in MLUT of MPLD. In MPLD, due to the special interconnection structure of 

MLUTs, it is difficult to construct a NN with fully connection into the MPLD. Therefore, 

we proposed a novel network structure MNN (MPLD-based Neural Network) to adapt 

the MPLD structure. To confirm the LUT-based neuron model, we design a logic 

simulation experiment by implementing a 4×4×4 LUT-based neural network. We confirm 

that the simulation results are the same as the results of the theoretical analysis. To 

evaluate the effectiveness of the MNN, we also performed a recognition training 

experiment using the MNIST dataset. The experimental results show the MNN is an 

effective neural network which can get well accuracy and loss for MNIST data 

recognition.  

In our future work, we will explore binarization methods for MNNs and analyze 

design approaches for MNNs that can recognize images and data of any size in MPLD. 
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Chapter 11 

11. Summary 

This study focuses on enhancing the reliability of IoT (internet of things) and AI 

(artificial intelligence) edge devices to advance the development of an ultra-smart society. 

Specifically, we concentrated on ECUs (electronic control units) employed in self-driving 

vehicle systems, which demand high functional safety, and on a new reconfigurable 

device, the MPLD (memory-based programmable logic device), currently under 

development for IoT and AI edge computing. We proposed testing methodologies 

designed to improve the reliability of these edge devices. 

Initially, for automotive ECU edge devices, we proposed a technique for test point 

insertion and selection for multi-cycle BIST (built-in self-test), designed to improve test 

quality and reduce test time. 

Multi-cycle BIST has the potential to decrease the volume of scan-in patterns. This 

study meticulously examined the stuck-at-fault detection model in the time-expanded 

circuit. We found that the incongruity between controllability and observability of signal 

lines, exacerbated by increasing capture cycles, incites issues of fault masking and fault 

detection degradation. These issues hinder the effect of multi-cycle tests on test pattern 

reduction. To address this problem, we introduced a test point insertion (TPI) technique 

into a multi-cycle LBIST (logic BIST) scheme aimed at decreasing the volume of scan-

in patterns for target fault coverage. The proposed TPI method involves replacing partial 

scan cells with fault detection scan flip-flops (FDS-FF), also known as observation point 

insertion (OPI), to enhance observability. It also incorporates self-flipping control logic 

into the combinational logic, termed control point insertion (CPI), to alleviate the 

controllability bias of signal lines of the circuit under test (CUT) at the intermediate 

capture cycles. We further propose a TPI procedure, which includes control point 

insertion and observation point pruning, to identify effective test points leading to 

maximum scan-in pattern reduction. Experimental results on ISCAS89 and ITC99 

benchmarks demonstrate an average pattern reduction of 24.4X, thus validating the 

proposed TPI’s effectiveness in reducing the test application time of power-on self-test 

(POST). Future work aims to implement the proposed test point selection algorithm in an 

industrial design to evaluate the effectiveness of the multi-cycle LBIST scheme on 

commercial automotive ECUs. 
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Subsequently, to ensure the reliability of MPLD devices, we proposed a high-quality 

interconnect defect test method to improve the reliability during the manufacturing 

process, and an aging monitoring technique for field reliability. 

The proposed interconnect defect test method can identify stuck-at and bridge faults 

at the address-data (AD) interconnects between MLUTs (multiple look-up tables) within 

the MPLD device. This method also holds potential for actual field use as it can help 

avoid configuring the logic into a faulty MLUT block, thereby ensuring higher reliability. 

The test method consists of a configuration phase, which configures pre-generated 

internal test data to create the route map in the MLUTs array for fault propagation paths, 

and a logic phase, which applies pre-generated external test data to the MPLD’s external 

logic output ports to excite target faults, observe faulty effects, and acquire the fault 

propagation path set for fault location. This test method addresses both fault detection and 

fault diagnosis in MPLDs. Our proposed test method has been validated through logic 

simulation experiments on the designed MPLD with a 6×6 MLUTs array. The results 

confirm its effectiveness in diagnosing the location of the injected stuck-at and bridge 

faults. Future work will explore the test generation of internal and external test data to 

identify other interconnect faults in the MPLD device, and consider methods such as 

design for testability and built-in self-tests for the MPLD device. 

The proposed aging monitoring technique aims to detect and report the aging state 

of MPLD devices during field operation. The method involves periodically measuring the 

delay of MLUTs (multiple look-up tables) during the operation of the MPLD devices, 

using a specially designed delay monitor. This delay monitor is implemented using a ring 

oscillator circuit compatible with the MPLD device structure. Furthermore, we designed 

a new counter circuit, adapted to the MPLD structure, to store the ring oscillator’s 

oscillation frequency for delay calculation. This method enables the measurement of both 

the global delay (across all MLUTs) and the local delay (of specified MLUTs) within the 

MPLD device. To evaluate the proposed methods, we designed an MPLD with a 6×6 

MLUTs array and conducted logic simulations by injecting delay into the MPLD. The 

logic simulation results confirmed that the proposed method can effectively measure the 

delay of the MLUTs with minor error. In future work, we aim to conduct a quantitative 

analysis of aging phenomena and develop a precise simulation method along with an on-

chip test method. Furthermore, we intend to explore strategies to determine the total 

number and locations of delay monitors needed to achieve a specific or higher level of in-

field reliability. 
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