Study on the Reliability Enhancement of
Edge Computing Devices

A Thesis
Submitted
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

in Engineering

By
Xihong Zhou
Supervisor: Hiroshi Takahashi (Full Professor)

Graduate School of Science and Engineering

Ehime University

Abstract

The recent rapid evolution of Internet of Things (IoT) and Artificial Intelligence (AI)
technologies has accelerated the emergence of a smart society where every object can
interface with the internet. This connectivity facilitates real-time data collection and
analysis. One of the pivotal challenges within this context is maintaining the integrity and
reliability of edge devices—key components of IoT systems operating within a 5G
environment. The accumulation of inaccurate data from compromised edge devices may
incur erroneous decision-making, thus compromising the overall system reliability and

deteriorating trust in the smart society.

This study addresses the reliability issues of two distinct types of edge devices:
electronic control units (ECUs) deployed within advanced driving-assistant systems
(ADAS), and an innovative memory-based programmable logic device (MPLD)

specifically engineered for executing Al functionality in IoT systems.

The initial objective of this study is to enhance the reliability of ECU devices,
instrumental in automotive control systems. Adherence to functional safety standards,
specifically ISO 26262, is a mandatory requirement for these devices. Under the
functional safety standard ISO 26262, automotive systems necessitate in-field testing,
such as the power-on self-test (POST). The POST examines safety-critical components
during the system’s startup, prior to executing any functional operations. This test is vital
for the early detection of potential internal faults to prevent system failures. Nevertheless,
for testing automotive ECUs, the POST requires minimal test application time to achieve
essential test quality (e.g., >90% latent fault metric) to meet the functional safety criteria
of ISO 26262. This research proposes a performance-enhanced POST, specifically the
Multi-Cycle Power-on Self-Test, which applies multiple test clocks to execute numerous
function operations after a root test pattern is set into the Circuit Under Test (CUT). To
address fault-masking and fault detection degradation under multi-cycle testing, this
study presents a test point insertion technique to reduce test application time while
maintaining superior fault detection for multi-cycle POST. Moreover, a method is devised
to identify a user-specified number of test points capable of achieving the greatest scan-

in pattern reduction to attain a target test coverage.

The secondary objective concentrates on enhancing the reliability of MPLD edge
devices. These are particularly designed for low power consumption and low latency in

edge computing applications. This study explores two fundamental aspects of MPLD

II

reliability: interconnect defect testing during the manufacturing phase and aging
monitoring techniques to ensure field reliability. During the manufacturing process, the
detection of interconnect faults in the memory-based programmable elements (MLUTs:
multiple look-up tables) array is of critical importance to yield improvement and the
assurance of high reliability. The study proposes a comprehensive test method capable of
detecting and identifying stuck-at and bridge faults in the interconnects between MLUTs.
Moreover, to guarantee long-term field reliability, an aging monitoring technique is
proposed that employs a ring oscillator circuit to periodically measure the delay of
MLUTs. This method facilitates the detection of aging-induced delays, potentially leading
to performance degradation and system failures, thereby ensuring the in-field reliability
of MPLD devices.

Extensive experiments and simulations on benchmark circuits demonstrate the
effectiveness of the test point insertion technique, achieving a significant reduction in test
application time while maintaining high fault detection quality for the automotive ECUs.
The interconnect defect test method for MPLDs successfully identifies and locates single
interconnect faults, contributing to enhanced manufacturing processes and field reliability.
The aging monitoring technique accurately gauges the delay of MLUTs, yielding

invaluable insights into the operational aging state of MPLD devices.

This study constitutes a significant contribution to the field of reliability
enhancement for [oT and Al edge devices, with a specific emphasis on automotive ECUs
and MPLDs. The proposed techniques grapple with the challenges of ensuring functional
safety and long-term reliability in these devices, which are vital for the development of a
smart society. Future research directions include the exploration of additional fault
detection methods, test generation techniques, and design for testability approaches for
MPLDs. Furthermore, the study of quantitative analysis and on-chip test methods will be
pursued to deepen the understanding and management of aging phenomena in these

devices.

III

Table of Contents

ADSEEACE c.ucenneeriiirisnnniinsisnnricssssssnecssssssnssssssssessnsans I
Table Of CONTENTS ...ccovuererrerensseinssninssnisssanssssanessssnsssasss I
LSt Of FIGUIES «ouuuerriiiivnnricnscsnniicsssnniesssssnressssnsssssssssssssssssssesssssssssssssssssssssssssssssssasssssssses VI

List 0f TabIesccceveeriveriisnrisinrcssnrcssnnrcssnencsssnecsnnenes IX

Part I: Introduction and Preliminarycccecueeeeuneecnnnee.

1. INtroductioncccceeeevcerecssercssencssnnrcssnencssnsscssnsessnsecsnns 2
T BACKGIOUNMoooiiiiiiiiiiiei ettt ettt et e et e bt e bt e bt e st e bt e seenseennean 2
1.2 ODJECHIVE ...ttt ettt et e bttt e bt et e bt et e e bt e bt e bt e bt enbee bt enbeen 2

1.2.1 Reliability Enhancement for Automotive ECU Edge Devices.............c..cccccevieniannnnen. 3
1.2.2 Reliability Enhancement for MPLD Edge Devicesc..ccooiiiiiiiiiiiiniieeeee 3
1.3 Structure of this Dissertation ... 4

2. PrelimiNary...ccceccceiecsseicssssnssssnssssanssssssssssssssssssssssssssssasssssassssssssssssssssssssssasssssasssssasssss 5

2.1 Integrated CIrCUitcoooiiiiiii ettt ettt e et e e e e e 5
2.1.1 Digital Logic CirCuitcooouiiiiiiiiie et et 5
2.1.2 Combinational and Sequential Logic Circuitcoccooviriiniiniiiiie e 6
2. 1.3 Latch and FHP-TI0Poocooiiiiiei ettt et eeae e e e e enes 8
B B 23 4 1] 1 USRS 9
215 SRAM ..ottt ettt h et h e e a et bt et et et a et et eteententen 10
2,100 TrAMSISTOT ...c...eiiniiiie et ettt ettt e st e e bt e e bt e e aeeesateesabeesbeesbeeenns 11

2.2 Integrated Circuit Reliability..................coiiii e 12

2.3 Integrated Circtit TeSt............ooouiiiiiiiiiiiiii ettt ettt eeeens 13
2.3 0 PUrPOSE OF TSooieiiiiiiieiieeiee ettt e et et e et e st e e estaessbeesseesnsaesnsaeensseessennns 13
2.3. 2 TeSt PriNCIPIEoooeeiieiieeeeeee ettt e et e et e et e e eeentaeensaeenreenns 14

24 FaUult MOAEISoooiiiiii et ettt et e st e et e e eate e ateesabeeebeeeseeenneeenns 15
2.4.1 Stuck-at Fault Model ..ot 15
2.4.2 Bridging Fault Modelcoooiiiii e 16
2.4.3 Delay Fault Model............ccoooiiiiiiii ettt 16

2.5 TeSt GeMEIAtIONc..coeiiiiiiiiiiiiiiitetet ettt ettt e st ne b e ennenne 17
2.5.1 Logic SIMUIAtIONc.ooooiiiiieiiie ettt e e e b e e beesnreeessaeessneenes 18
2.5.2 Fault Simulation...............ccoooiiiiiii et e 18
253 FaUIt COVEIaGEooueiiiiiiiiie ettt ettt et et e et e et e e bte e ateeeaeeeeaes 19

2.6 Design for Testabilityccoooiiiiiii et e 19
2.6.1 SCaN DESIGN....co.oiiiiiiiiiiii et ettt st e 19
2.6.2 Logic Built-In Self-Test............cccooeiiiiiiieiieciie ettt etee e e e reesree e eese e 20

2.6.3 Test Point INSEItiONoooooiiiiiiiiiiiiieeeeeee e e e e aaaeeeees 22

v

Part II: Test Point Insertion for Multi-Cycle Power-On Self-Test........c..cccceeurreunnee. 23
3. Multi-Cycle Test SChEME......cccevverierrerisssercsssencsssanesssenesseressssssssssssssssssssssssssasssssasssssns 28
3.1SCaN BIST ..ottt ettt st sttt be e 28
3.2 Multi-cycle BIST ...ttt ettt et e sttt et e et e eabee s 28
3.3 The Problems of Multi-cycle BISTccccooiiiiiiiiiiiiieececreeeseeeere e 29
3.3 Fault MASKINE..........ooiiiiiiiieiieee et et et e et e e ebe et eesnseeensaeensaeenseenns 29
3.3.2 Fault Detection Degradation Problem (FDD)...............cccoccooiiiiiiiiiiiiieee e, 30

4. Fault Detection Model in Multi-Cycle BIST 31
5. Test Point Insertion and Selection for Multi-Cycle BIST 34
5.1 Test Points for Multi-Cycle BISTccccooiiiiiiiiiiieeeceeeeeee e 34
5.1.1 Observation Point: FDS-FFcccooiiiiiiee ettt 34
5.1.2 Control Point: Self-FLpping CPcccccoiiiiii e 36

5.2 TP Selection for Multi-Cycle BIST ..ot 37
5.2.1 A New Evaluation Metrics for CP Selection..................ccoooiiiiiiiiiniiiniieeeee 38
5.2.2 TP Selection Procedure for Multi-cycle BIST.............ccocooiiiiiiiiiniiiieeeeeeeee 40

5.3 Experimental RESUILS................coociiiiiiiieiiiiiieiieee ettt ite e e ee e b eessaeesaeenaeenes 42
5.3.1 Evaluation of the Efficiency of the Multi-Cycle Testc.ccccoeviininninninninnenene 43
5.3.2 Evaluation of the Efficiency of the CPI and the OPI.........................cciiine. 45

5.4 COMCIUSIONS ...t ettt ettt e et e e bt e e bt e e s bt e eabeeebeeebeeenns 48
Part III: Test to Memory-based Programmable Logic Device......cccceeevurrccrcvnnrrccsnnes 49
6. Memory-based Programmable Logic Device (MPLD)ccoverevvercssnnecssnnccsnnnes 52
6.1 MPLD ATCRITECTUIEoooiiiiiiiiiiieeie ettt et e et e et e e ite e st eesbeeebeeenneeenns 52
6.1.1 MPLD Structure: MLUTs (Multiple Look-up Tables) Arrayccccceenienennnnn 53
6.1.2 MPLD Memory Operation Mode.............c.c.cooiiiiiiiiiiiiiiieeeeeeee et 53
6.1.3 MPLD Logic Operation Mode...............c.cocoriiiiiiiiiiiiiiiiiieieeieeieeeeieee e 55

6.2 MPLD WOrK PrincCiple............c.ooooiiiiiiiieii ettt tee et e e raessaeesaeenreenes 58
7. Reliability issue in MPLDccoveevueesercnnene 60
7.1 Manufacturing-Defects-caused Reliability Issue.................cccoocviriiiiniiiniiinieceee e, 60
7.2 Field-Aging-caused Reliability ISSUEccooooviiiiiiiiiiiiiiieeeee e 62
T3 COMCIUSIONS ...ttt et ee et e et e et e st eeesteesee e neeesnseesnseeeseeennseenns 63
8. Interconnect Defect Test for MPLD..........ccccceeeevueecrunneee 65
8.1 Interconnect Fault Models in MPLDcccoooiiiiiiiiiee e 66
8.1.1 Stuck-at Interconnect Faults................co.ooiiiiiii e 66
8.1.2 Bridge Interconnect Faults..............c..ccooiiiiiiiii e 66

8.2 Test Method for Interconnect Faults ... 67
8.2.1 Test Strategy for Fault Detection and Location.....................ccoeevveniiiniii e, 68

8.2.2 TeSt GEMEIAtIONooooiiiiiiiiiiiiic e e e e et e e e e e e e e e aaaareeeeeeens 72

8.3 Simulation ReSUILScocooiiiiiii et et 77
8.3.1 Verification of Testing to Stuck-at Interconnect Faults ... 78
8.3.2 Verification of Testing to Bridge Interconnect Faultsc...coccoiiiiiiiinninnnn. 79

8ed DHSCUSSIONoeniiiiiiieeiie ettt et te et et e et ee et e e aee e ateesaseesnseeesseesseesnseesnseeanseeennsaenns 80
8.4.1 Test Effectivity for Interconnect Faults....................coccoiiiiiiiiiniiineee e 80
8.4.2 Time Complexity of the Test Procedure....................coocoiiiiiiiiiiii e 81
8.4.3 Test Availability for Multiple Interconnect Fault........................c 81

8.5 COMCIUSIONS ...ttt ettt e et e et et e st e e sbeeebeeebeeenns 83

9. Aging monitoring for MPLDiiiinniinisninssnesssenesssenesssassssssssssssssssssssssssssssases 85

9.1 Delay-Monitoring technologiesccoccooiiiiiiiiiiiiii et 85

9.2 Delay Monitoring in MPLDcccoooiiiiiiiii et 86
9.2.1 Ring OScillator (RO)oooiiiiiiiieiii ettt tee e ee et e e teeeseeesaeenseenns 87
9.2.2 Delay Monitor Design Using ROccccoiiiiiiiiiiiiiiiiieeeeeeteeeeee e 87

9.3 Simulation ReSUILS ... et ettt et 89

0.4 DIISCUSSIONMeiiiniiiiiiieiie ettt ettt e et e e bt e e at e e s ab e e e bt e eabeeebeeesmbeesabeesbeeenbeeenns 90
9.4.1 Overhead of Inserting Delay Monitorcoooiiiiiiiiiiii e 90
9.4.2 Work Scope of Delay MONItor..............cocooiuiiiiiiiiiniiiiieiieiteiceee et seeeneees 90
9.4.3 Locating Abnormal MILUTSocoiiiiiiiiieeie ettt eeaeeene e 90

9.5 CONCIUSIONS ...ttt b e a e st be e nennes 92

Part IV: Application of MPLDccccceevercreescnnenns 93
10. A Solution to Implement Neural Networks in MPLD 94

10.1 LUT-based neuron mModelccoooiiiiiiiiiiiiiniiieeieneeeeteteeiteeetere e s nens 96

10.2 MPLD-based Neural NetWork (IMINN)ccooiiiiiiiiei ettt e e eearee e 97
10.2.1 A sparse neural network: MININ ...t 97
10.2.2 Implementing MINN into MPLD ... 98

10.3 Experimental ReSults...............ccooiiiiiiiiiiii et 100
10.3.1 Confirm LUT-based Neuron Modelcccooiiiiiiiiiiiiniiieieeeeeeeeieeeen 100
10.3.2 Confirm Proposed MININocciiiiiiiiiiieieecie ettt e et e e ieeeereesseessaeensaeenseenns 102

10.4 COMECIUSIONS ..ottt ettt r e et sae e nne 103

11. SUMMATY .ueeerrrecrnenisnecsnenssnccsseesaesssesssnccssesssasssasssns 104
References......eiineennecnsnecsennsnensecssnecsensssesssecssne 106

LiSt Of PUDLCATION........ueeeeeeeeenneeeeceeereeeeereessessseseesesssssssssosses 112

VI

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 2.18
Figure 2.19
Figure 2.20
Figure 2.21
Figure 2.22
Figure 2.23
Figure 3.1
Figure 4.1
Figure 4.2
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7

List of Figures

Symbols, logic functions, and truth tables of some common logic gates.ccceeeeeeee. 6
Combinational and sequential [0ZiC CITCUILS.uuumummmmuiiiiiii e 7
Synchronous and asynchronous sequential CIFCUILS.ceevvrreeririirieiriieiieieieeieeeeeeeeeeeeeees 7
BiStADIE CITCUIL. «eeeeeeeriiniriieeeeeiiiiiiiieee et e ettt e e e e et e e e s sinrrreeeeeeeesamnrnnneeees 8
SRAAECH. 1eeeeeeeeeeiiieeee ettt ettt e e e e e e e e e e e e e e e e e eaas 8
DJAECHL ettt et e e e 9
D AHP10P. ettt 9
REGISTET. +eeeiieetieeeeee ettt ettt e e et e et e e e e sttt e e e e s e snnnrreeeeeeeeesnnnnnnns 10
SHITE TEZISTET. ¢ eeeeeitreeeeeeeeeeiteteeee ettt e et e e e e e e e reeeee s e s sanrnneeeeeeeeenns 10
Schematic diagram for an SRAM.cceiiiiiiiiiiiiieiiiiiieeee e e e 11
TTANSISTOTS. «.vvvvveeeeeeerriintrrreeeeeeeeeinrrreeeeeeesennrrrrreeeeeesssanrnrreeeeeessssnnnrraneeeeessssnnnnes 11
Bathtub curve for IC reliability.ccccveiiiiiiiiiiiiiiiiiiiiicccecccc e 12
Basic scheme of TC teStNE.....cocuviiiiiiiiiiiiiiieeeiiec e 14
Example of stuck-at fault model........cccouvveieieiiiiniiiiiiiieieieeeecee e 15
Bridging fault: wired-AND/wired-OR bridging fault models........cccccceevevmrreeeeeennnnn. 16
Delay fauls: slow-to-rise (slow-to-fall) faults.cceeeeeeriiiiiiiiiiiiiiiiieiiiieieeeeeeeeeeeen. 17
Test ZeNeration PrOCEAUIE.uvvreeeeeerrrrrrieteeeeeeeereirirreeeeeeeeranrrreeeeeeessssnnnrreeeeeesanns 18
Schematic for a scan deSign.ccueeiiveuiiiiiiiiiiiiiiice e 20
Example for implementing a SFF: Muxed-D scan cell.cooovvvmriieeeeiennniiniiieeeeeennn. 20
Basic architecture of LBIST......ccceeiiiiiiiiiiieeeiieiiiiieeeeeeeeeiirreeeeee e eiirreeeeee e 21
n-stage MOodular LESR. «..ccooiiiiiiiiiiiiieeeeeeeeeeee e e e e 21
1=StAZE MISR. «.eeiiiiiiiiieiieee ettt ettt e e e e e e e e e e nnrneee e e e e e eaas 22
Two typical types Of teSt POINLS. «eeeeeerrrrunriiiieeeeeeiiiiiiieeeee e e e e e eerreeeeee e e 22
Test operations in Multi-Cycle BIST......ccetiiiiiiiiiiiiieeeeieiieeeeee e e e e 29
Single stuck-at fault detection in time-expanded CIrCUit. «....eeeeeeeeeeeeerereerereeeeeeeeeeeeeenee 31
Testability vs. Capture CYCIES....eevumrrrriieeeeiiriiiiieeeeee e e e eiiieeeee e e e e eirreree e e e e e e 33
The DFT architecture of FDS-FF insertion for LBIST.......ccuvvveeeeiiinniiiiiieeeeeeeeenee 34
Replace a scan-FF with FDS-FF to address fault masking.cccccoovuuiiiiiiiiinnnnnnnn. 35
Self-Flipping CP insertion for multi-cycle LBIST........cceeeeiiimniiiiiieeeeiinniiiieeeeeeene 36
The combinational logic frame 0f 27 CIFCUIL. ..uvvvvvereeereeriiiiiiieeeeeeeeriiieeeeeee e e 39
Fault coverage of benchmark circuit with 100Kk patterns............ccccoevvviiieiiiiiiiiiininnnn. 44
Scan testing vs MUlti-CYCle tEStING. «.eevvuvrrrrreeeeeeiiiiiiiiieeeeeeeeriieeee e e e e e eiereeeeeeeeeeaas 44

Fault coverage vs. Pattern number (scan testing, multi-cycle testing, OPI and CPI under

VII

MNUILI-CYCIE TESTINE) . ceneneiereeeeeteieiiteee ettt e e e e et e e e e e e e sanrra e e e e e e e esmnnrnaeeees 46
Figure 6.1 MPLD ATIChItECIUIE. «.evvvveeeetiiiiiiiiiiieeeeeeieiieeee e e e e e e e e e e e e e e sannnreeeees 52
Figure 6.2 Schematic of MPLD working in memory operation mod.cceeeeeeeeviiiiiieeneennnnnnnn. 54
Figure 6.3 Schematic of MLUT working in memory operation mod.coeeeeeeeriieiiineenennnnnnnnn. 54
Figure 6.4 Schematic of MPLD working in memory operation mod.ccccuvveiiiiiiiiiinnnnnnnnen. 55
Figure 6.5 Schematic of MLUT working in memory operation mod.cooeeeeeerieeeiiienennnnnnnnn. 56
Figure 6.6 ATD CIFCUIL. «vveeeeeerriiiiiiieeeeeeeieiiitteeeeeeeeeiitrreee et e e e eeinnrreeeeeeeessamnrrereeeeeesssmnnnraeeees 56
Figure 6.7 Functional operation of logic output control CIrCUit.coeeeeveerieiiieiiiiiiiiiininnnnnnnnnnnn. 57
Figure 6.8 Logic configuration in a single MLUT.cccooiiiiiiiiiiiiiiiiiii, 58
Figure 6.9 Configure a logic circuit in tWo MLUTS. ...coooiiiiiiiiiiiiiiiiii, 59
Figure 7.1 Manufacturing defects in MPLD.......cccciirrriiiiiiiieiiiniiiiieeeeeeeereeeeee e 61
Figure 7.2 Interconnect defect causes logic fault in configured circuit..........oeeeeeeeeiiiinnnnnnnnn.n. 61
Figure 7.3 Aging progresses in MPLD. c.ccccueeiiiiiiiiiiiiiiiieeeeeeereceee e 62
Figure 7.4 Aging caused ATD deteCtion EITOccceeirrrrrumrrrreeeeeerniiiiiieeeeeeeeennnrreeeeeeeeeesennnneeeees 63
Figure 8.1 Stuck-at interconnect fault Models.ccoovvrrmriiiiiiiiiiiiiiiieeeee e 66
Figure 8.2 Bridge interconnect fault models.......cooeveveiiiiiiiiiiiiiiiiiiii 67
Figure 8.3 Interconnect fault detection 1dea.ceeeerrrrrmriireeeiiiriiiiiiieeee e e 69
Figure 8.4 A universal diagnosis procedure for FPGA [61]. cccoovvviiiiiiiiiiiiiiiiiii, 70
Figure 8.5 Route maps for an MLUT with 4-pair AD interconnects.oooeeeeeeereereeeeeeeeeeeennnnnn. 71
Figure 8.6 Testing mechanisms under route maps to locate an interconnect fault. 72
Figure 8.7 Example of test cube in the MLUT for horizontal route map.ccoeeeeeeeeeeeeennnnnnnnn. 74
Figure 8.8 Example of test cube in the MLUT for vertical route map.oooeeeeeeeeiieeieeenennnnnnnnn. 75
Figure 8.9 Example of test cube in the MLUT for diagonal route map.ccccuvvvvieiiiiiiinnnnnnnn. 75
Figure 8.10 Applying mechanisms of external patterns.cooevvveeeeririiiiiiiiiiiiiiiiiiiiiiiieeeeeeen, 76
Figure 8.11 Apply all-zero to excite stuck-at-1 fault.coooeeviiiiiiiii, 77
Figure 8.12 Apply walking-zero to excite AND-bridge fault............coeeeeiiiiiii 77
Figure 8.13 MPLD with 6X6 MLUTS QITAY. ...eeeeeruriiiiiiiiieiiiiiieeeeiieee et ee e saae e 78
Figure 8.14 Simulation result of the test under 7717 fOr SQ0.......ccoovvveeeeeiiiiiiiiiiiii, 79
Figure 8.15 Simulation result of the test under 77, fOr Sa0.......ccooevveeeeeiiiiiiiiiiiii, 79
Figure 8.16 Simulation result of the test under 7m; for ORbDd.euvvvveeeeeeeeniiiiieeeeeeeeieeeee. 80
Figure 8.17 Simulation result of the test under 7m; for ORDA.eeeeeeiuieeiiniiiiiiiieeeeieeeee 80
Figure 8.18 Example to identify multiple faults........coovouveiieeieiimiiiiiiiieeeeeeeeeeeee e 82
Figure 9.1 Concept of delay monitoring teChNIQUES. ...ovvvvveeeeeeeeriiiiiiieeeee e e 86
Figure 9.2 Ring OSCIIIALIOT. «eeeereiiiiiiiieeeeeiiiiiiiieeeee e ettt e et e e e e e e eiirreee e e e e e e e sasneeeeeees 87
Figure 9.3 Delay monitor; (a) RO in MLUTS, (b) counter for RO.ceeeeeiriniiiiiiieeeeeenniiiieeeeen. 88

Figure 9.4

RO and counter in MLUTS to be measured for the delay.ccccceevveiiiiiniiiinnnnnen. 89

VIII

Figure 9.5 Simulation waveform to measure delay for MLUT.cccocoviiiiiiiiiiiiniiiiiiiennens 90
Figure 9.6 Delay-monitors deploying method.c.oovvveiiiiieiiiinniiiiiiieeeeeeeeeeeeee e 91
Figure 10.1 A NN NEUIOM. ceeetereiitiiieeeeeeeeiiiitieeeeeeeesitirreeeeeeeesnnrreeeeeeeessannrreneeeesesssnnnnnrneeees 96
Figure 10.2 LUT-based neuron model in a single MLUT.ccoovviiiiiiiiiiiiniiiiiiiiiieceieene 96
Figure 10.3 A fully connected NN. ...cccooiiiiimiiiiiiiiiiiiiieeeee e e e e e eeinrrreee e e e e e snnnreeeeees 97
Figure 10.4 Connection limit in MPLD. c.cucuviiiiiiiiiiiiiiiiiieeeeeeeiieeceeee e e 97
Figure 10.5 Sparse connection in unit of MLUT in MPLD.....cccooviimiiiiiiiiiinniiiieeeeeeeeeieeeeeee. 98
Figure 10.6 Proposed MNN (MPLD-based Neural Network)ccccvvveeeeeeiinniiniieeeeeennnieieeeeee. 98
Figure 10.7 Feature extraction in MINN. c..cceuiiiiiiiiiiiiiiiiiieeee e eeirreee e e e eenneeee e 98
Figure 10.8 MNN wiring connection way in MPLD.cceitiimniiiiiiieeeennniiieeeee e 99
Figure 10.9 A size of 4x4x4 NN constructed in 3 MLUTS. «cccoovvvimiiieieeiiniiiieeeeeeeeeieeeeeee. 100
Figure 10.10 LUT-based neuron model for the size of 4X4X4 NN......cceeeirrmrrmiieeeeeeennnnnneeeeen. 101
Figure 10.11 Experimental results for the LUT-based neuron model.coovvvrrveeeeeeinnnnnnnnneeen. 101
Figure 10.12 MNN and FNN training result in 50 epochs.cccooeviiiiiiiiiiiiiiiiiiiiiee 102
Figure 10.13 MNN training result in 150 €pOChS. ..ceoveumiiiiiieiiiiiiiiieeeee e 102

Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 8.1
Table 8.2
Table 8.3

IX

List of Tables

Evaluation metrics of signal liNes in S27......c..ccveiieiieiieiienienieciesee e sveseesreeae e e 39
Detailed information of benchmark CIrCUILS..........cecvereririerieriereeiee e 43
The final fault coverage reached by 100K scan-in patternscccceeveevereesveevennnenne 47
The number of scan-in patterns to achieve 90% fault coverage...........ccocoevveverereeienenne. 47
Test cubes to create route maps for the MLUT with m-pair AD interconnects................ 74
External test patterns applied to external inputs of MPLDccccoooviviiiiiiiieiicieenee 76

Test effectivity for all single AD interconnect faults............cceeeverieriincieiiieiieeieeieeee 81

Part I: Introduction and Preliminary

Chapter 1

1. Introduction

1.1 Background

In recent years, rapid advancements in [oT (internet of things) and Al (artificial
intelligence) technologies have made the realization of an ultra-smart society more
plausible. In such a society, every object connects to the internet, enabling real-time data
collection and analysis. Particularly, in IoT systems within a 5G environment, a vast
number of edge devices (integrated circuits) connect to the cloud, facilitating data

collection and analysis.

However, if we don’t ensure the integrity of edge devices, inaccurate data could be
collected in the cloud, leading to erroneous decision-making based on data analysis. This
might result in decreased system reliability, undermining the safety and confidence of the

ultra-smart society.

Simultaneously, with the rapid progress of Al technology, Al edge devices with
intelligent capabilities are evolving at the data generation source, i.e., the edge endpoints.
This reduces the dependence on cloud systems and enables real-time data analysis and
processing on edge devices. However, physical defects in Al edge devices may decrease

the accuracy of intelligent processing.

To secure the ultra-smart society, high-reliability technology for IoT and Al edge
devices is indispensable. The primary factor that impairs the reliability of edge devices is
“failure.” While various approaches such as high-quality manufacturing tests before
shipment, redundancy, and duplication techniques have been proposed, establishing field
testing techniques during edge device operation remains a challenge. Furthermore, there
is a need for testing techniques to guarantee the reliability of specially designed edge

computing devices that have been newly developed.

1.2 Objective

Edge devices are broadly classified into two categories: non-reconfigurable devices,
such as ECUs (electronic control units), and reconfigurable devices, such as FPGAs
(field-programmable gate arrays). In recent years, with the progress of self-driving cars,

the functional safety of ECUs in automotive systems has become a fundamental

requirement according to the ISO 26262 standard. On the other hand, the requirements of
edge devices, such as low power consumption and small latency, hinder the application
of traditional reconfigurable devices in edge processing. To address this, a new type of
reconfigurable device named MPLD (memory-based programmable logic device)
specially designed for edge processing is being developed. Therefore, this study focuses

on two objectives:
(1) Reliability enhancement for automotive ECU edge devices.
(2) Reliability enhancement for MPLD edge devices.
1.2.1 Reliability Enhancement for Automotive ECU Edge Devices

First, this study aims to develop fault detection enhancement technologies to meet
functional safety standards for automotive ECU edge devices.

Automotive ECU edge devices play a critical role in automotive control systems,
and improving their reliability is essential. According to the functional safety standard
ISO 26262, automotive systems must undergo field-testing, such as power-on self-test
(POST). Unlike production testing, POST needs to reduce test application time and meet
the test quality (e.g., >90% latent failure indicator), indispensable for ISO 26262. By
developing high-speed and high-quality fault detection methods in field testing, we can
ensure accurate fault detection and thus functional safety of automotive ECU edge

devices.

Specifically, to enhance the reliability of automotive ECUs, our goal is to develop a
fast built-in self-test (BIST) method that can satisfy test quality and detect faults in
automotive ECUs edge devices in real-time. Based on this goal, this study proposes a test
point insertion technique for multi-cycle power-up self-test to reduce test application time

with indispensable test quality.
1.2.2 Reliability Enhancement for MPLD Edge Devices

Next, this study will shift our focus to the reconfigurable edge device MPLD and

develop fault detection and fault state warning techniques for its reliability.

The MPLD is built exclusively with an array of MLUTs (multiple look-up tables)
without any additional programmable interconnect resources. An MLUT is the essential
reconfigurable element constructed by SRAMs (static random-access memories). In
contrast to traditional reconfigurable device FPGAs, the MPLD can achieve a high

density of programmable devices with low power consumption and minimal delay.

During the production phase of the MPLD, a variety of defects may exist in the
SRAM memory of the MLUT. Conventional memory testing methods are available for
these memory defects. However, a significant number of defects could also be present on
the interconnects between MLUTs; these defects could cause considerable yield loss and

reliability degradation.

In addition, when the MPLD operates in the field, various aging phenomena such as
HCI (hot carrier injection) and BTI (bias temperature instability) could cause aging-
induced delays in the MLUT array of the MPLD. The rate of aging progress in the MLUT
array may vary. Frequently-used MLUTs may exhibit faster aging speeds, meaning the
aging-induced delay would be larger. These variations in aging-induced delay could affect
the performance of configured logic circuits and even cause a system failure, threatening
the in-field reliability of the device.

Therefore, to guarantee the long-term reliability of the MPLD, this study proposes
test techniques tailored to its specific needs. These include a test method to detect and
identify interconnect defects in the MLUT array during the production phase and a delay
monitoring technique to detect aging-induced failures in the field.

1.3 Structure of this Dissertation

This dissertation is organized as follows:

Part I Introduction and Preliminary

Chapter I introduces this study.

Chapter 2 introduces some important concepts in integrated circuits and test techniques
that are relevant to this study.

Part II Test Point Insertion for Multi-Cycle Power-On Self-Test

Chapter 3 introduces multi-cycle test scheme.

Chapter 4 introduces fault detection model in multi-cycle BIST.
Chapter 5 introduces proposed methods of test point insertion and selection for multi-
cycle BIST.

Part III Test to Memory-based Programmable Logic Device

Chapter 6 gives an introduction to the MPLD.

Chapter 7 introduces reliability issue in MPLD.

Chapter 8 proposes test method to identify interconnect defect in MPLD.
Chapter 9 proposes aging monitoring technique for MPLD.

Part IV Application of MPLD

Chapter 10 introduces a solution to implement neural networks into MPLD

Chapter 11 outlines a summary of this study.

Chapter 2

2. Preliminary

This chapter introduces some important concepts related to this study, including
integrated circuit (IC) concepts, reliability of IC, principles of IC testing, fault modeling,

test generation, fault simulation, and design for test (DFT) techniques.

2.1 Integrated Circuit

An integrated circuit (1C), also known as a microchip or simply a chip, is a miniature
electronic device that contains thousands, millions, or even billions of electronic
components, such as transistors, resistors, capacitors, and diodes, fabricated onto a single
semiconductor material, typically silicon. These components are interconnected by
conductive pathways etched into the chip’s surface, forming a complex network of
electronic circuits. The integration of numerous components onto a single chip allows for

the creation of compact, lightweight, and highly efficient electronic systems.

Integrated circuits can be classified into various types, including digital, analog, and
mixed-signal (which consist of both digital and analog signaling on the same IC)
integrated circuits. Each type is tailored for specific applications. However, this

dissertation will not cover analog and mixed-signal integrated circuits.

2.1.1 Digital Logic Circuit

A digital circuit 1s also known as a logic circuit because it carries out logical
operations on digital signals. Logic (or digital) circuits are constructed by interconnecting
elements called gates (or logic gates) whose inputs and outputs represent only the values
in terms of 0 and 1 [1].

Some of the common logic gates are AND, OR, NOT, NAND, NOR (an inverter),
and XOR (Exclusive-OR); with symbols as shown in Figure 2.1. The output of each gate
can be represented by a logic function of the inputs, i.e., a Boolean function. The Boolean
(logic) operations N (*), V (+), ~ (), and @ correspond to AND, OR, NOT, and XOR,
respectively. A logic function can often be also specified by a truth table. These gates are
fundamental building blocks in digital logic circuits and are used to perform various
logical operations in computer systems and electronic devices. A summary of the logical

operations performed by these gates is as following [1].

AND OR NOT NAND NOR XOR
X x X —>| X. X
x;::D—o z X;::D—» z x—ol >o—> 2 X;—P o— z X;:Do—» z x;:D) — z
z=x,AX; z=x,VX, z=X z=x,AX, z=x,VX, z=x,D X,

x

1 Xz

0

x
x
x

1 Xz

0

1 Xz

0

1 X

0

|°—‘N

- 200
- o o ofN
- 200

- o = ofX
= 2 aofN

- 0o
© = =N
- 0o
o oo N
-~ a2 0o
© = ao|N

1 1 1 1
0 0 0 0
1 1 1 1

Figure 2.1 Symbols, logic functions, and truth tables of some common logic gates.

Logical Operations

AND gate: The output is 1 only when both inputs are 1. E.g., the output z of an AND gate with
inputs x; and x; is 1 if and only if both of its inputs are 1 simultaneously, and the logic function
can be expressed as

Z=X] A X2 (orz=x1 X2 OI'Z=X1)C2)

OR gate: The output is 1 if at least one input is 1. E.g., the output z of an OR gate with inputs

x; and x; is 1 if and only if any of its inputs are 1, and the logic function can be expressed as
z=x; V x2(orz=x; +x2)

NOT gate: It simply negates the input value. E.g., the output z of an NOT gate with inputs x is

1 if and only if its input is 0, and the logic function can be expressed as
z=X (orz=-x)

NAND gate: It is the negation of an AND gate, meaning the output is 1 when at least one input
is 0. E.g., the output z of a NAND gate with inputs x; and x; is 1 if and only if any of its inputs
are 0, and the logic function can be expressed as

zZ= Xy /\ Xy = x_] \Y x_2

NOR gate: It is the negation of an OR gate, so the output is 1 only when both inputs are 0. E.g.,
the output z of a NOR gate with inputs x; and x; is 1 if and only if both of its inputs are 0, and the
logic function can be expressed as

z=x;Vx, =x; N X,

XOR gate: The output is 1 when the inputs have different values. E.g., the output z of an XOR
gate with inputs x; and x; is 1 if and only if its inputs are not simultaneously equal, and the logic
function can be expressed as

z=Xm2 V xix; =x; @ x2

2.1.2 Combinational and Sequential Logic Circuit

Logic circuits can be categorized as combinational (logic) circuits or sequential
(logic) circuits, depending on whether the logic circuits contain a feedback loop which is
a directed path from the output of some gate to an input of that gate [1].

A combinational (logic) circuit consists of an interconnected set of gates with no
feedback loops. A block diagram for combinational circuits is shown in Figure 2.2(a),
where the inputs and outputs are used to interact with the circuit and are also known as
the primary inputs (P1s) and primary outputs (POs), respectively. The output values of a
combinational circuit at a given time depend only on the present applied input values.

Hence, each output can be specified by a logic function of its input variables.

A sequential (logic) circuit consists of two sections: a combinational circuit part and
the feedback loops containing memory circuits. The output values of a sequential circuit

at a given time depend on the present applied input values and previous applied input

values. The history information of previous applied inputs is summarized as the state of
the circuit and stored in memory. Figure 2.2(b) shows a block diagram for sequential
circuits, where the outputs of the memory as the feedback inputs feeding the present state
of the sequential circuit; and the inputs of the memory as the feedback outputs
summarizing the next state for the sequential circuit. A sequential circuit can be modeled
mathematically by a finite-state machine (FSM) or sequential machine, and each primary

output and state can be specified in the FSM according to the primary input variables.

 — L —
Coml_:nna_tlon.al
Pls . Logic Circuit . POs
) : I
e
Combinational present] *Dj D—» next
Logic Circuit state : : state
Pls : 4 ; POs feedback loops
-
_»D.r’ D—» feedback = | Memory | = feedback
: i * |(circuit'sstate)| * outputs
— —
(a) Combinational logic circuit (b) Sequential logic circuit

Figure 2.2 Combinational and sequential logic circuits.
Sequential circuits can be further categorized as either synchronous circuits or
asynchronous circuits, depending on whether or not the memory portion of the circuit is
controlled (or clocked) at discrete instants of time (time-frame) by a synchronizing pulse

signal called a clock pulse or simply a clock.

A synchronous circuit is applied to a clock to the memory portion, and all feedback
loops are controlled synchronously by the clock. Figure 2.3(a) shows a block diagram for
synchronous circuits. The memory element in a feedback loop is a flip-flop (FF). Only at
a clock pulse can the FFs be stored with new information, i.e. at this time, the present

state can be updated, simultaneously with the next state being stored in the FFs.

An asynchronous circuit operates asynchronously, and its memory portion does not
need to be clocked by a synchronizing pulse signal. Figure 2.3(b) shows a block diagram
for asynchronous circuits. The memory element in each feedback loop is either a latch or

a time-delay element.

C:)m!)lr;:a_tlonfl C:m!)lr(l:a.tlon_ztal
Pls : ogic Circui POs Pls ogic Circui . POs
B —— H ————r D —— H f———r
r— e r—
present| ib" . |next present| *D ; D->)
state | ° : P [state state | H ;
’_' feedback loops —‘ ’-’ feedback loops
F Delay
b | (or Latch)
= Delay
clock 1% |(or Latch)|
(a) Synchronous circuit (b) Asynchronous circuit

Figure 2.3 Synchronous and asynchronous sequential circuits.

2.1.3 Latch and Flip-flop

Latches are the fundamental element that stores binary information in logic circuits.
A latch stores one bit of a binary value as long as power is applied and holds its value
until it is updated by new input signals. The latch is built from logic gates to derive a
bistable circuit to keep the stable value by itself.

Figure 2.4 shows a basic bistable circuit that is built by two NOT gates in a feedback
loop, it is also known as two cross-coupled inverters. This circuit keeps two stable states
O and O, which means it can store a bit value. The value of the stable states can be
updated for storing a new value by additional gates to control the two cross-coupled

inverters.

Q Q

Q Q
Figure 2.4 Bistable circuit.

As shown in Figure 2.5(a), two additional OR gates control the two cross-coupled
inverters (it can also be considered as two cross-coupled NOR gates), and it can set (S) or
reset (R) the value of the O and O by input signals of the OR gates. This is known as an
SR-latch. The SR-latch can also be designed by adding AND gates to the two cross-
coupled inverters or with two cross-coupled NAND gates, as shown in Figure 2.5(b). The
SR latch can be added gates at inputs to provide an additional control input (C) that
determines when the state of the latch can be changed. This is known as a gated SR-latch

(with control input), as shown in Figure 2.5(c).

R Q R Q —{s o
SR-latch
s Q s Q —R__9—
(a)
S s —
Q Q —Is ao—
SR-latch
R Q R Q —R Qf—
(b)
R)
C C —CSR-latch
Q Q —R Qf—
S R

(c)
Figure 2.5 SR-latch.
The SR-latch is rarely used in practice because it makes the circuit difficult to

manage due to an indeterminate condition that may occur when all inputs are equal

simultaneously. But it holds significance as it serves as the basis for implementing other
latches and flip-flops. Figure 2.6 shows a D-/atch implemented by using an SR-latch. The
D-latch is more commonly used than the SR-latch because it eliminates the indeterminate
state of the SR-latch by making the S and R of the SR-latch never equal simultaneously.
Although latches are valuable for storing binary information and designing asynchronous
sequential circuits, they are not suitable for synchronous sequential circuits due to the

lack of time control leading to an immediate output response, unlike flip-flops.

D S Q— —D Q—
—1 C SR-latch| D-latch
R QI —cCc aQf

Figure 2.6 D-latch.

Flip-flops are used as memory elements in synchronous sequential circuits. Various
types of flip-flops, such as D flip-flop (D-FF), JK flip-flop (JK-FF), T flip-flop (T-FF),
are realized by configuring SR-latches or D-latches. The D-FF is a frequently used flip-
flop in synchronous circuits. Figure 2.7 shows a D-FF realized with two D-latches
connected in a master-slave configuration. Figure 2.7(a) shows a negative edge triggered
D-FF, where the circuit samples the D input during the high level of the clock (CLK) and
changes the Q output only at the negative edge of the CLK. In contrast, Figure 2.7(b)
shows a positive edge triggered D-FF, in which samples during the low level and changes

only at the positive edge.

master slave
D D Q D Q— —D Q—
D-latch D-latch D-FF
[c Q— —o»C Q—
CLK
(a)
master slave
D D Q D Q —D Q—
D-latch D-latch D-FF

c cC Q —>Cc Q—
. [

(b)
Figure 2.7 D flip-flop.

2.1.4 Register

A latch or flip-flop memory element can store only one bit of binary value. By
organizing multiple of these memory elements, multi-bit storage can be implemented. A
basic multi-bit storage element is known as a register. Figure 2.8 shows a basic structure
of a typical register consisting of a set of n D-FFs. It is capable of storing » bits of binary

numbers, where each D-FF shares a common clock. Since the D-FFs have only one data

10

input, whatever input we apply on the input side, at the same time as a clock transition

will be stored in the D-FF. Therefore, it is convenient to use the D-FF in the registers.

— Q— —p Qq— —D Q— —{p aq—
D-FF D-FF DFF | D-FF

c c c >C
CLK o L S S J n

Figure 2.8 Register.

There is another type of register where it is possible to shift binary data between
adjacent flip-flops of the register. This type of register is known as the shift register. In a
shift register, the output of one flip-flop is connected to the input of the next flip-flop.
There are two ways to input data into a shift register: serial input and parallel input. The
serial input means that only one new bit of data is loaded into the register at one clock
pulse. A shift register like this has only one input. In contrast, the parallel input means
that all bits of data are loaded into the register at one clock pulse. Such a shift register has
multiple inputs. Similarly, there are two ways to output data from the shift register: serial
output and parallel output. Figure 2.9 shows the structure of an n-bit serial-input serial-

output shift register consisting of n D-FFs.

Serial _,|p Q »D Q »|D o] EE— —|D ql— Serial
input output
D-FF D-FF D-FF | e D-FF

C C C C
CLK 0 LR W 3 e n

Figure 2.9 Shift register.
2.1.5 SRAM

Compared to registers that store multiple bits of binary data, if a large quantity of
binary data needs to be stored, one of the extremely optional storage devices is random-
access memory (RAM). A relatively fast RAM is static random-access memory (SRAM).
SRAM is composed of a large number of basic binary storage cells. A binary storage cell
is built from the basic storage element such as a bistable circuit (two cross-coupled
inverters) or a latch. A set of binary bits of data stored in a group of storage cells is known
as a word. A set of eight bits of data is referred to as a byte. The capacity of an SRAM is

usually expressed as the total number of bytes (or bits) it can store.

In an SRAM memory, in addition to the storage cell (SC), other circuits are needed
to control the reading and writing of SRAM, such as the decoder circuit used to select the

memory word specified by the address. Figure 2.10 shows an example of the schematic

11

diagram for an SRAM that can store 2word xm-bit. Which shows 2fxm binary storage

cells and the decoder for selecting individual words.

Data Inputs
Bit 0 Bit 1 Bit 2 Bit m-1
Write/Read
— Word 0
5 Word 1 [
o
o
Address § o
“N'é : :
4 : :
v v v v
 fue
v v v v

Data Outputs
Figure 2.10 Schematic diagram for an SRAM.

2.1.6 Transistor

Logic gates are realized by transistors, and today most integrated circuits are
implemented by metal oxide semiconductor field effect transistors (MOSFET, or simply
MOS) because larger integrations can be obtained with them [1]. The most basic
MOSFET-based logic families are p-channel MOSFET (PMOS) and n-channel MOSFET
(NMOS). Another dominant MOS-based logic family is the complementary MOSFET
(CMOS), which consists of a pair of complementary NMOS and PMOS transistors.

Figure 2.11(a) shows the circuit symbols for NMOS and PMOS transistors [2]. For
NMOS transistors, when the gate-to-source voltage Vs is less (more) than the threshold
voltage Vi, the drain will be in a cut-off (turn-on) state to the source. For PMOS, it is in
a cut-off state when Vg is less than Vi, and in a turn-on state when Vg is more than V.
Figure 2.11(b) shows a COMS invertor.

D Supply
Nmos: | &

+s A V4
PMOS: Qo||{‘
D Ground
(a) NMOS and PMOS (b) COMS invertor

Figure 2.11 Transistors.

12

2.2 Integrated Circuit Reliability

As IC technology continues to advance greatly, the integration levels of ICs have
increased dramatically. The increase in the number of integrated transistors has led to the
emergence of large-scale integration (LSI), very large-scale integration (VLSI), and
even ultra-large-scale integration (ULSI). The high circuit density of ICs improves their
performance and reduces their cost. On the other hand, high integration density requires
extremely fine manufacturing processes, where even minute variations in these processes
can easily lead to defects (A defect in an IC is a flaw or physical imperfection that may
result in a fault manifestation [3][4].), thus may resulting in a failure IC. Furthermore,
high-integration ICs, due to their tiny transistors and delicate interconnections, are prone
to damage from various factors during field use, such as aging or wear. These challenges
highlight the increasing importance of reliability in high-integration ICs.

The reliability of an IC varies with the failure rate over its life cycle [5]. One
common approach to analyzing the reliability of ICs, particularly LSI devices, is by using
the “bathtub curve” model. It is a widely adopted model used in reliability engineering to
describe the failure pattern of electronic components, including ICs. This model
characterizes the failure rate of ICs over time. As shown in Figure 2.12, the bathtub curve
consists of three phases: the early failure phase, the random failure phase, and the wear-

out failure phase [5].

Manufacturing test Field test and field monitoring
A
Early failure phase Random failure phase Wear-out failure phase
(Infant mortality) (Normal operating life) (End of life)

Failure Rate

Time

Figure 2.12 Bathtub curve for IC reliability.
Early Failure Phase: In this phase, the failure rate of ICs is relatively high during the
initial period of operation. This phase is often associated with manufacturing defects or
issues arising from the “infant mortality” phenomenon, where components fail early due

to latent defects introduced during the manufacturing process.

Random Failure Phase: After the early failure phase, the ICs enter a phase where the

failure rate remains relatively low and constant over an extended period. This phase

13

represents the normal operating life of ICs, where failures occur randomly due to various

factors such as external stresses, electrical overstress, or component wear-out.

Wear-out Failure Phase: Over time, as ICs age and accumulate usage, they enter the
wear-out failure phase. In this phase, the failure rate starts to increase, indicating the
degradation of components and a higher likelihood of failures. Wear-out failures are
typically associated with aging effects, such as electromigration, oxide breakdown, or

material fatigue.

By understanding the bathtub curve model and its application to IC reliability,
researchers and engineers can assess and improve the reliability of ICs. For this purpose,
one of the important roles involves the /C test technique. By employing effective IC test
techniques to detect and minimize the defects causing failures, the normal operating life
of ICs can be extended. As shown in Figure 2.12, before an IC is shipped to the market,
in early failure phase conducting high quality manufacturing test can eliminate the
defective IC or that with a high potential for failure. By employing strategies such as field
test and field monitoring to report and predict the random failures and wear-out failures,
the overall reliability of shipped ICs can be enhanced.

2.3 Integrated Circuit Test

2.3.1 Purpose of Test

An IC test is a procedural examination aimed at detecting and/or localizing faults
resulting from defects (or design errors) within ICs [1]. It can be carried out at various
stages in the lifecycle of an IC chip to ensure reliability, including during the design
(involving design verification), manufacturing (involving manufacturing test), and field
operation (involving field test or field monitoring) stages [4]. This Dissertation mainly

focuses on the test during the manufacturing stage and field operation stage.

Depending on the specific purpose of the testing, the tests may be categorized as
fault detection and fault location (also known as fault diagnosis) [1]. The purpose of fault
detection is to determine whether an IC is defective (faulty) or free of faults (fault-free),
while the fault diagnosis goes further by pinpointing the location and type of the fault,
along with other pertinent information necessary for resolving the diagnostic issue. The

fault detection is prioritized as the initial step during fault diagnosis.

In the manufacturing test, fault detection is a mandatory step, because if any fault is
present, the entire chip must be discarded and cannot be shipped to the market. At this

stage, fault diagnosis is usually not necessary; it can of course be carried out selectively

14

for the purpose of improving the manufacturing process by identifying the location, type,

and cause of faults present in the defective chips.

In the field test (or field monitoring), if it is established that a fault exists by fault
detection, typically, fault diagnosis may be subsequently employed to identify and isolate

the specific faulty node or component for necessary repairs.

2.3.2 Test Principle

The basic scheme of IC testing is shown in Figure 2.13 [3][4][6]. A set or a sequence
of input patterns is applied to the inputs of the circuit under test (CUT or DUT: device
under test) that produce output responses at the outputs of the CUT, and then the output
responses are compared with the expected (correct) responses to determine whether the
CUT is fault-free (good) or faulty. It is considered fault-free and passes the test if the CUT
produces the correct output responses (matched with the expected ones), otherwise, is
faulty and fails the test.

Test Patterns Output Responses

Good circuit
match (Pass)

Comparator

Circuit Under Test
(CUT)

mismatch Faulty circuit
(Fail)

Expected Responses
Figure 2.13 Basic scheme of IC testing.

Where an input pattern utilized for testing purposes is commonly referred to as a test
pattern, also known as test stimuli or test vector. Typically, a test for a CUT encompasses
multiple test patterns, which are collectively referred to as a test set or test sequence. If
the test patterns must be applied in a specific order, the term “test sequence” is used to
denote a series of test patterns. Test patterns, along with the corresponding output

responses, are occasionally referred to as test data [1].

In the design verification, the test patterns and the expected responses are decided

by the designer according to the requirements specified in the design specifications.

In the manufacturing and field tests, the expected responses can be obtained from
circuit simulation of the fault-free (design error-free) circuit that has been verified by the
design verification. The input patterns during the design verification process also can be
used as test patterns for the manufacturing test and field test. But, typically, to find
efficient test patterns that detect all faults considered for that circuit, the test patterns are

decided by a process known as fest generation for the specific fault model.

15

2.4 Fault Models

A chip may be produced various types of defects. Since the complexity and diversity
of the defects, it is difficult to generate test patterns for the real defects. To generate test
patterns more easily, it is necessary to build mathematical models that can accurately
describe the behavior of the real defects and that must be computationally efficient in

simulation environments. A mathematical model like this is known as the fault model.

There are many fault models reflecting various defects. The most popular and
common fault models, the stuck-at fault model, the bridging fault model, and the delay

fault model, will be introduced in the following subsections.

2.4.1 Stuck-at Fault Model

A stuck-at fault describes a faulty behavior of the defect causing the value of a signal
on lines (including PIs, POs, and interconnects) in a logic circuit to be stuck at a constant,
either a logic 1 or a logic 0, referred to as stuck-at-1 (sal) or stuck-at-0 (sa0), respectively.
A defect such as this could be a short circuit between the signal wire and the power supply
or ground, or it could be something else. Figure 2.14 shows an example of a stuck fault.
Figure 2.14(a) shows a stuck-at-1 fault on line ¢, which is fixed to a value of 1 by a defect
that could be a short to the power supply, and Figure 2.14(b) shows a stuck-at-0 fault on
line d, which is fixed to a value of 0 by a defect that could be a short to ground.

a short to supply a short to ground

(a) stuck-at 1 fault (b) stuck-at 0 fault
Figure 2.14 Example of stuck-at fault model.

If only one fault exists in a logic circuit, it is referred to as a single fault. If two or
more faults are present at the same time, then the set of faults is referred to as a multiple
fault. For a circuit with n signal lines and a given fault model with £ different types of
faults (for the stuck-at model £=2: sal and sa0), there may be at most £ xn single faults;
and fault collapsing techniques can help reduce these numbers [06]. For multiple faults,
the number of possible faults increases sharply up to (k+1)"-k*n-1. Testing for multiple
faults is difficult due to too many faults to be assumed; however, testing for single fault
models can be utilized to test multi-fault models; therefore, single fault models are

typically used for test generation [4].

16

2.4.2 Bridging Fault Model

A bridging fault reflects the behavior of a defect causing that the value of a signal
line is dominated by the value of another signal line. A typical type of such defect is a
short circuit in a certain situation between two signal lines, as shown in Figure 2.15(a).
Depending on the short circuit situation, the values of the bridged signal lines are
dominated in different ways, which leads to several different types of bridging faults.
Generally, the values of shorted signal lines are dominated by either logic value O or 1 [1].
If it is 0-dominant, it is referred to as the wired-AND bridging fault model (AND-bridge),
as shown in Figure 2.15(b); If it is 1-dominant, it is referred to as the wired-OR bridging
fault (OR-bridge) model, as shown in Figure 2.15(c) [6]. These two types of bridging

faults are the most frequently used in practice.

’
(a) Bridging falfl)t (b) wired-AND bridging fault (c) wired-OR bridging fault
Figure 2.15 Bridging fault: wired-AND/wired-OR bridging fault models.

Other bridging fault models are the dominant bridging fault model, and the
dominant-AND/dominant-OR bridging fault model. The dominant bridging fault model
was developed to more accurately reflect the behavior of certain short circuits in CMOS
circuits, in which case one line is assumed to act as the driver, dominating the logic values
on the two short lines [4][6]. In certain cases, the dominant bridge fault model fails to
accurately reflect the behavior of a resistive short. To address this limitation, the
dominant-AND/dominant-OR model has been proposed to take into account the observed
behavior of resistive shorts in specific CMOS circuits, where one driver exerts dominance

over the logic value of the shorted lines, but only under certain logic conditions [4].

2.4.3 Delay Fault Model

A delay fault refers to a type of fault or error that occurs in a circuit when certain
signal delays exceed the specified time limits. In logic circuits, signals are expected to
propagate through various logic gates and interconnects within a specific time frame. If
the propagation delay of a signal exceeds the predetermined threshold, it can lead to
functional errors or failures in the circuit. Delay faults can arise due to various factors,
such as design errors (e.g., aggressive place and route), process variations (e.g., gate
threshold variations), manufacturing defects (e.g., resistive bridges/opens), environments

(e.g., severe temperature fluctuations), or field aging phenomenon (e.g., hot-carrier

17

injection, bias temperature instability). These faults can manifest in different ways,

including hold time violations, setup time violations, clock skew, or interconnect delays.

Depending on the ways to model delay faults, there are several typical delay fault
models considered, which are the transition fault model, gate-delay fault model, line-
delay fault model, segment-delay fault model, and path-delay fault model [7]. Transition,
gate, and line delay models are utilized to characterize delay defects that concentrate at
individual gates. Conversely, path and segment delay models are employed to address
delay defects that are dispersed across multiple gates [7]. These models are specifically
designed to capture and represent the various types of delay defects in the timing behavior

of integrated circuits.

In these models, it is assumed that in a fault-free circuit, each gate, along with its
interconnects on the input and output pins, possesses a predefined nominal rise (fall) delay
from each input to the output pin. When delay defects increase the nominal rise (fall)
delay, it results in a slow-to-rise (slow-to-fall) fault [7], as depicted in Figure 2.16. This
fault implies that the transition from 0 to 1 (or 1 to 0) will not reach any output within the

specified time limits and result in faulty circuit behavior.

a delayed [normal
c __[slow-to-rise
|_ —e time limit —>
b | normal
slow-to-fall

Figure 2.16 Delay fauls: slow-to-rise (slow-to-fall) faults.

2.5 Test Generation

To generate effective test patterns to identify the various potential fault models in
the circuit, a process referred to as test generation is to be done [3]. Figure 2.17 shows a
procedure for test generation. Once a circuit has successfully passed design verification,
the circuit is considered to be a design error-free (fault-free). In test generation, first, a
logic simulation is performed on the fault-free circuit to generate candidate test patterns
and their expected responses. Then, fault simulation is carried out by injecting fault
models into the fault-free circuit to filter out invalid test patterns and remove already
detected faults. Finally, the quality of selected valid test patterns is evaluated using fault
coverage. If the evaluation results are adequate, the process ends. Otherwise, the process
continues by adding new test patterns through logic simulation until the desired fault
coverage is achieved. The details about the logic simulation, fault simulation, and fault

coverage in the test generation procedure are as follows.

18

A 4

Logic S|mula_t|or_| Test Expected

for fault-free circuit patterns | responses
Test Generator

Fault-free
circuit
net-list

Fault Simulator
Fault simulation for
fault-injected circuit

\ 2 4

Delete invalid ones

Fault
list

Remove detected faults

A

.| Fault coverage
evaluation

End

Figure 2.17 Test generation procedure.

2.5.1 Logic Simulation

Logic simulation is a process that uses test vectors to simulate the behavior of a logic
circuit. It is typically performed during design verification to ensure that the circuit is an
error-free design. After the design verification, it is also employed for fault-free circuits
in order to generate candidate test patterns in the test generation process. In this case, it
is typically performed in a test generator. In the test generator, the fault-free circuit is
loaded into the logic simulator while input patterns, that may be from a random pattern
generator, are fed to the fault-free circuit to generate the output responses. These input
patterns and the corresponding output responses are used as candidate test patterns and
expected responses, which will be filtered in the fault simulation process to detect specific

fault models.

2.5.2 Fault Simulation

Fault simulation is an important step in the test generation process as it evaluates
the ability of the test patterns to detect specific fault models. In this phase, various faults
in a fault list, such as stuck-at faults, bridging faults, or delay faults, are injected into the
fault-free circuit. The circuit is then simulated with these injected faults. In the simulation,
for each applied test vector, the output response is compared with the expected response.
If the comparison result is a mismatch, the test vector is considered to be able to detect
the injected fault, and the detected fault will be removed from the fault list; otherwise, it
means that the test vector cannot detect the injected fault, and the invalid test vector will
be deleted from the test patterns. After all the test vectors in the test patterns have been
applied, a quality evaluation for these test patterns will be performed by calculating the

fault coverage.

19

2.5.3 Fault Coverage

Fault coverage is used to evaluate the effectiveness of the generated test patterns in
detecting faults for high test quality. As defined in the formula below, it evaluates the
quality of the test patterns by quantifying the ratio of the number of detected faults to the
total number of faults in the fault list.

Number of detected faults
Total number of faults

Fault coverage=

Higher fault coverage indicates that the set of test patterns is more effective and able
to detect more faults specified in the fault list. During the test generation process, if the
result of the fault coverage evaluation for the applied test patterns to the fault simulation
is unsatisfactory, new test vectors should be added through the test generator until the

fault coverage after the fault simulation reaches a satisfactory value.

However, sometimes, it is very hard to obtain high fault coverage for some circuits,
especially for very highly integrated chips, because some faults in the circuit are difficult
to detect or even undetectable using conventional tests. For this reason, a technique called
design-for-testability has been proposed for achieving high test quality.

2.6 Design for Testability

As circuit integration increases, testing becomes increasingly difficult. Design for
testability (DFT) is a crucial aspect of modern circuit design that focuses on making
circuits easier to test. By incorporating specific techniques and hardware into the design,
DFT enables efficient control and observation of the internal state of the circuit from
external access points. This ensures that products are thoroughly and accurately tested,
guaranteeing their reliability and performance. This section will discuss three popular

DFT techniques: scan design, logic built-in self-test, and test point insertion.
2.6.1 Scan Design

Scan design is a widely used DFT technique that enhances testability by introducing
scan chains into a circuit to obtain the controllability and observability of the internal
state in the circuit. Typically, a scan chain is a shift register formed by connecting certain
selected flip-flops in a circuit in a linear fashion, allowing for the insertion and extraction
of test data during the testing process. These flip-flops that are selected for the scan design
are called scan flip-flops (SFFs) or scan cells. The number of these SFFs in a scan chain

is the length of this scan chain. By incorporating scan design, the internal state of the

20

circuit can be efficiently controlled, enabling the application of various test patterns and
the observation of circuit responses. The scan chain facilitates the shift of test data in and

out of the circuit, simplifying the testing procedure and improving fault coverage.

Figure 2.18 shows a schematic for a scan design [4]. A test control signal (TC) added
to all flip-flops in the scan chain controls the three operation modes of the scan chain:
normal mode, shift mode, and capture mode. In normal mode, all flip-flops operate in the
normal functional configuration of the circuit. In shift mode, any desired test data can be
set to all the flip-flops of the scan chain by shifting from the scan-in. These test data will
be applied to the circuit in the normal mode. In capture mode, the test responses stored in

the flip-flops can be observed from the scan-out by shifting.

A A 4
vy yYy

Pls : : POs
Combinational
Logic Circuit

A 4

v

A 4 A 4

r —l Scan-out
|

SFE[’

SFF|

TC 1 SFF:

Scan-In

Figure 2.18 Schematic for a scan design.

There is usually more than one implementation way to convert the selected flip-flop
in a circuit into a scan cell SFF. The most widely used scan cell is the Muxed-D scan cell
[4], as shown in Figure 2.19. The Muxed-D scan cell is implemented by using a D flip-
flop and a multiplexer. A scan enable input (SE) on the multiplexer is used to select the

data input (DI) and scan input (SI).

Scan-out

—[Data-out

2.6.2 Logic Built-In Self-Test
LBIST (Logic BIST: logic built-in self-test) is another powerful DFT technique that

incorporates self-test circuitry directly into the design. This self-test circuitry generates

21

and applies test patterns to the circuit, autonomously detecting and identifying faults or
errors. LBIST eliminates the need for external test equipment, making the testing process
more autonomous and efficient. By embedding self-test circuitry, LBIST enables
comprehensive testing of the circuit’s internal logic and facilitates fault diagnosis and

localization.

Figure 2.20 illustrates the basic architecture of LBIST [4][6]. Three key components
are designed within the circuit for implementing self-testing. One of these components is
the test pattern generator (TPG), which automatically generates test patterns to be applied
to the inputs of the circuit under test (CUT). These test patterns stimulate the CUT and
help detect potential faults. The output response analyzer (ORA) is responsible for
compacting the output responses of the CUT into a signature through signature analysis
and comparing it with the expected signature. Additionally, the logic BIST controller (or
test controller) generates specific test control signals to coordinate the BIST operation
among the TPG, CUT, and ORA. Once the BIST operation is completed, the ORA

provides a pass/fail indication, indicating whether the circuit has passed or failed the test.

Integrated Circuit

BIST Controller

(Test Controller)
Test Pattern _ .|Output Response R .
Generator (TPG) ["| Analyzer (ORA) >Past/Fail

A\ 4
Circuit Under Test
»>POs
Pls (CUT)

Figure 2.20 Basic architecture of LBIST.

In LBIST applications, TPGs are commonly implemented using linear feedback
shift registers (LFSRs). Figure 2.21 illustrates the structure of an n-stage modular LFSR
typically used for generating test patterns or test sequences. It consists of n D flip-flops
and a selected number of XOR gates. It can efficiently generate sequences with good

randomness (pseudo-random sequences) at a relatively small area cost.

Figure 2.21 n-stage modular LFSR.

22

In ORAs, signature analysis schemes are often employed to compress the output
responses. These schemes typically use multiple-input signature registers (MISRs).
Figure 2.22 shows the structure of an n-stage MISR. This MISR compresses multiple
output sequences by simultaneously feeding them into extra XOR gates added to the
modular LFSR.

Op-FF D-FF D-FF} - D-FFH

0 1 2 n-1

Figure 2.22 n-stage MISR.
2.6.3 Test Point Insertion

Test Point Insertion (TPI) is a DFT technique aimed at enhancing observability and
controllability within the circuit. It is typically used to improve the detection probability
of RP-resistant (random-patterns resistant) faults so they can be detected during pseudo-
random testing, to increase the circuit’s fault coverage to a desired level [4]. TPI involves
strategically inserting additional circuit nodes, called fest points, including control points
and observation points, throughout the design. These test points provide access to internal
signals, allowing for the monitoring and control of specific areas within the circuit during
testing. By carefully selecting and placing test points, engineers can target critical areas
or potential fault sites, improving fault detection and enabling more effective debugging

and characterization of the circuit.

Figure 2.23 shows two typical types of test points [4]: a test point with a multiplexer
and a test point with AND-OR gates. Where the control point (CP) can be connected to a
primary input, an existing scan cell output, or a dedicated scan cell output; the observation
point (OP) can be connected to a primary output through an additional multiplexer, an
existing scan cell input, or a dedicated scan cell input; and a test control signal (TC)

controls the test mode and normal operation mode of the test point.

— ——:
CP

TC TC
(a) Test point with a multiplexer (b) Test point with AND-OR gates

Figure 2.23 Two typical types of test points.

23

Part II: Test Point Insertion for Multi-Cycle
Power-On Self-Test

24

With the rapid evolution of technologies in developing automotive systems toward
fully autonomous vehicles, various complex integrated circuits (ICs) are embedded in a
car. The functional safety of the automotive system becomes a fundamental requirement
as indexed by the [SO26262 standard [8].

Power-on Self-Test (POST) is the most common test solution to ensure the safety of
a system. It tests the safety-critical components during the system’s startup before running
any functional operations. It is thus helpful to detect any potential faults inside the
components early to avoid a system failure. For testing automotive ICs, The POST needs

to meet several constraints as follows.

* Indispensable test quality: The ISO26262 standard imposes at least 90% latent fault
metric to meet the most stringent automotive safety integrity level (ASIL D) for
avoiding a random hardware failure (e.g., stuck-at faults) during the lifetime of ICs
[8];

* Limited test application time (TAT): test must be complete during the power-on reset
at the engine startup (e.g., 10~50ms);

» Low power: the consideration of power consumption during the test is helpful to
avoid false tests under the delay fault model [9];

 Low silicon overhead: suppress the increase of the Design for Test (DFT) hardware

due to the ever-increasing complexity of ICs.

The simple way to run the POST is to utilize the logic built-in self-test (LBIST)
which is the general test infrastructure for the manufacturing test. An LBIST is typically
a scan-based DFT scheme running test-per-scan testing, where each test (capture
operation) is executed after a serial scan-shift of pseudo-random patterns/responses. It
usually requires a large test volume to attain a reasonable test coverage due to the lower
quality of the pseudo-random patterns generated by the on-chip test pattern generator
(TPG). Consequently, the TAT increases under a usually slow scan-shift clock for scan-

shifting the test patterns.

In the past, many sophisticated solutions have been introduced to reduce the test
volume of the standard LBIST, such as scan structure optimization [10][11], the weighted
random pattern [12][13], random vector perturbing [14], Bit-flipping [15], and reseeding
[16][17][18]. Test point insertion (TPI) technology improves the testability of CUT by
inserting test logic into the CUT to deal with the detection of random pattern resistant
(RPR) faults [19][20][21]. Other solutions focus on improving the test scheme of LBIST
to enable the test-per-clock testing [22][23], such as the shadow flip-flops insertion [24],

and the Tri-Modal Scan test scheme [25] with reconfigurable scan cell design. Recently

25

the deterministic test compression technology is also applied to the automotive ICs to run
a POST or an in-system test [26][42]. The deterministic compression test requires a
modified BIST structure to allow applying the external test patterns generated by ATPG
or continuous reseeding for high fault coverage. In this work, we focused on improving
the test quality of an on-chip TPG-based LBIST by introducing a multi-cycle test
described later to make the standard LBIST comply with the ISO26262 standard.

Multi-cycle test applying more than one clock to run many times function operation
after the scan-shift operation is a smart way to complement the quality of the test patterns
(scan-in patterns) for test compaction [27][28][29], low-power testing [30][31][32], and
logic diagnosis [33]. In a multi-cycle test, the response of CUT at each capture cycle is
applied to the CUT in parallel as a capture pattern at the subsequent capture cycle. This
feature is helpful to reduce the volume of scan-in patterns for attaining a target test
coverage when the capture patterns can detect any additional faults that are missed by the
root scan-in pattern. The multi-cycle test has the behavior to take the CUT closer to its
functional operation conditions that can generate functional vectors with lower power
consumption, which are very helpful to at-speed testing for delay fault detection [31][32].
It is also easy to implement the multi-cycle test w/o the extra overhead in terms of
software (e.g., modified ATPG for deterministic pattern generation) and hardware (e.g.,
reseeding logic & memory). Therefore, the multi-cycle test is expected to be a promising
test scheme to a trade-off among the test coverage, TAT, silicon area, and low power for
POST.

A multi-cycle test may not always be effective for test reduction when the functional
sequences generated by the CUT are not helpful to fault detection. Appropriate DFTs that
can complement the value of the functional sequences are necessary to enhance the ability
of the multi-cycle test to test reduction. Many DFT approaches to improve delay fault
detection were presented in the past. In [34], the authors proposed a new scan cell named
Transition-Launch Flip-Flop to complement the test vectors by modifying the value of
partial FFs after the launch cycle in a two-cycle broadside test. In [35] and [36], the author
expanded the approach of [34] to multi-cycle tests and proposed the DFT approaches to
enhance the ability of the capture states to delay fault detection by holding [35] or
reversing [36] the value of all FFs at the appropriate capture cycles. These DFT
approaches considered the condition/requirement of the hard-to-detect delay faults in the

multi-cycle test.

In our previous works [37] [40], we have discussed the fault masking problem and
the fault detection degradation problem (FDD) that would obstruct the effect of multi-

26

cycle tests to detect stuck-at faults. It is necessary to solve the problems to reduce the test
application time of POST under the indispensable test quality specified in the ISO26262
standard. The main difference between the existing DFT approaches and our works is to
solve the Fault Masking and FDD problems for the stuck-at fault detection under the
multi-cycle LBIST.

The fault-masking problem denotes that the fault effects excited at the intermediate
capture cycles might be masked before the effects are propagated to the final capture
cycle for observation. To address this issue, we proposed a novel scan cell named the
fault-detection-strengthened FF (FDS-FF) that directly observes and keeps the value of
a faulty effect as it arrives at the FF during the capture operations [37][38][39].

The FDD denotes that the capability of capture patterns to detect additional stuck-at
faults degrades with the increase of the number of capture cycles [40]. In [41], we have
proposed a control point insertion (CPI) method to overcome the FDD by inserting
control logic into scan FFs that modifies the value captured into the FFs during
intermediate cycles, named the FF-CPI. While the basic idea is similar to the DFT
proposed in [35][36], our approach targeted controlling partial FFs but not the whole scan
chain. We also proposed an approximate evaluation approach to identify CPs by
analyzing the circuit structure without fault simulation. In general, the fault-simulation-
based evaluation in [35][36] needs more processing time than our method. Moreover, in
this study, we expand the FF-CPI approach of [41] to control the internal state of the
combinational logic for stuck-at fault detection, which is different from the existing DFT

approaches that will be described in Chapter 5.

This part consolidates the FDS-FF insertion approach denoted by OP (observation
point) insertion and the FF-CPI approach into a complete DFT technique referred to as
the test point insertion (TPI). Unlike the conventional TPIs which detect the random
pattern resistant faults, our TPI focus on addressing the Fault Masking problem and FDD
problem under a multi-cycle LBIST scheme to reduce the volume of scan-in patterns to

meet the indispensable test quality specified by ISO26262.
The main contributions of this part are as follows.

(1) We clarify the mechanism of Fault Masking and FDD by analyzing the stuck-at
fault detection model in the multi-cycle BIST scheme.

(2) We expand the FF-CPI approach to control the internal state of combinational
logic by a newly proposed control logic circuit named Self-flipping CP to

improve the testability for stuck-at fault detection under multi-cycle tests.

27

(3) We propose a new metric to evaluate the effect of candidate signal lines for CP
insertion under the multi-cycle BIST scheme.

(4) We introduce an improved probabilistic cost function to estimate the effect of CP
and OP insertion.

(5) We introduce a consistent procedure to identify a user-specified number of CPs
and OPs to achieve the most scan-in pattern reduction for attaining a target test
coverage in the multi-cycle BIST scheme.

(6) We evaluate the effectiveness of the proposed TPI for shortening the test
application time based on the experimental results of ISCAS’89 and ITC’99

benchmark circuits under the single stuck-at fault model.

The remainder of this part is organized as follows. Chapter 3 introduces the basic
concept of test-per-scan BIST, the multi-cycle test, and its issues. Chapter 4 describes the
fault detection model under multi-cycle BIST. Chapter 5 presents the TPI approach for
multi-cycle BIST, shows the experimental results on benchmark circuits, and concludes
the part.

28

Chapter 3

3. Multi-Cycle Test Scheme

In this chapter, we first review the characteristic of scan BIST and multi-cycle BIST
and discuss the problems of multi-cycle tests.

3.1 Scan BIST

In a traditional test-per-scan BIST, pseudo-random vectors generated by the on-chip
TPG are serially loaded into the scan chains driven by scan-shift clocks, known as scan
operation. When all the scan registers are filled up, a complete scan-in pattern is latched
to the inputs of the circuit. The circuit is then switched to the functional operation that
generates the corresponding functional response at the outputs of the circuit. The FFs will
be updated with the functional responses of the circuit when the trigger edge of the
functional clock arrives, known as the capture operation. The captured functional
response will be unloaded for fault detection as loading the next scan-in pattern. It is easy
to observe that test is conducted only once by applying a complete scan-in pattern. Almost

all test application time is consumed in the serial scan shift operation for test data delivery.

3.2 Multi-cycle BIST

The multi-cycle test applies more than one functional clock to run many capture
operations for every single scan-in pattern. In Figure 3.1, we show the operations during
the multi-cycle test in the time-frame expansion of CUT. Let’s define a multi-cycle test
by <s;, vi, ¢ij, 0i>, where s; denotes a scan-in pattern; v: denotes a primary input vector; ¢;
denotes the responses of CUT captured into the scan chains represented by the capture
patterns at the jth functional clock; and oi denotes a scan-out pattern which is the response
of the combinational circuit when c; is applied at the last capture. After a scan-in pattern
si is loaded into the scan chain in serial, the corresponding response cis is generated at the
outputs of combinational logic (FFs drawn in dashed line) and captured into the FFs in
parallel by the functional clock T1. Then, cis is used as test stimuli and latched to the
circuit to generate a new response ci2, and ci2 is applied and generates the corresponding
response ci3 in parallel until the final capture clock is applied. The response captured at

the final capture o: is unloaded for observation. It should be noted that the state of primary

29

inputs v; will be kept constant and the primary outputs in the intermediate capture cycle
are considered unobservable during the capture operation.

Primary inputs Primary outputs

SHEE O d E O s

Combinational
logic @T!1

clocks for s;loading ; 3 Kﬂlowngmd@unloading
Multiple Functional Clocks M=4 : Scan shift clocks
Scan Enable -
Scan shift Mode Capture Mode Scan shift mode

Figure 3.1 Test operations in multi-cycle BIST.

From Figure 3.1, it can be observed that conducting a multi-cycle test for each scan-
in pattern <s;, vi> could provide more chances to detect additional faults through the
functional capture patterns c;;. Therefore, it has promising potential to reduce the number
of scan-in patterns for attaining a target test coverage that contributes to shortening the
test application time due to fewer scan-shift operations. In addition, since the time of
capture operation is negligible compared to the serial scan-shift operation, the reduction
of the total test application time for POST is expectable.

3.3 The Problems of Multi-cycle BIST

In our earlier works, we have raised two issues that would obstruct the effect of
multi-cycle test to reduce the scan-in patterns for shortening the TAT of POST, called the
Fault Masking [37][38][39] and Fault Detection Degradation of Capture Pattern [40][41],
respectively. The following gives a brief overview of these problems for this study.

3.3.1 Fault Masking

Fault Masking denotes that the fault effects excited at the intermediate capture
cycles by capture patterns might disappear before these effects are propagated to the final

capture cycle for observation. Suppose that a fault fis excited at the first capture cycle by

30

the scan-in pattern. To detect f, its faulty value has to be propagated through all M-/
capture cycles until the final capture cycle is applied. When the CUT has a deep
combinational logic or the capture operation runs in a large cycle number, the time-
expanded propagation path of the faulty value would become too long to be activated for
detection, and the faulty value might be masked at certain logic due to the un-controllable
logic state during the capture operation. Severe fault-masking would decrease the test
quality of the scan-in patterns and capture patterns, and finally, obstruct the effect of the

multi-cycle test for reducing the scan-in patterns.
3.3.2 Fault Detection Degradation Problem (FDD)

FDD means the capability of capture patterns to detect more additional stuck-at
faults degrades as increasing the number of capture cycles. This is based on the
observation that multi-cycle tests can take the CUT closer to its functional operation
conditions with small internal transitions when increasing the capture cycles [31]. The
functional operation would consequently cause the states of the large number of FFs to
become constant when a number of capture cycles are applied. Since the value of FFs is
reused as test stimuli at the subsequent capture cycles, the large number of FFs with
constant values would cause the loss of randomness property of the capture patterns that

obstructs the detection of additional faults.

31

Chapter 4

4. Fault Detection Model in Multi-Cycle BIST

In this chapter, we give a detailed analysis of the stuck-at fault detection model in a
multi-cycle BIST scheme to elucidate the mechanism of Fault Masking and FDD as

follows.

For a stuck-at fault F;, its faulty effect will always exist at each capture cycle during
the capture operation, and we express it by f; in the time-expanded circuit as shown in
Figure 4.1. The faulty effect of F; at each capture cycle might be excited by the inputs of
CUT. We use Pej; to denote the probability to excite fault i at the jth capture cycle. To
detect Fi, the excited faulty value of F; at the jth capture cycle (fi;)) must be propagated to

the scan FFs for observing after the final capture, and we denote the propagation

probability as Ppi;.
Primary Primary
inputs 1 outputs
______________ I'-_"""""I -__-_____-__-:
d —] — | h
i H i i 1
. il 1 i 1
scan-imn -t L - L - L.
Combinational Combinational Combinational Combinational
logic @T1 logic @T2 logic @T3 logic @T4
FF
o FF
S; > 9;
FF
FF
scan
s; Ciy out
Pd;= Pe;*Pp;, Pd;= Pe;,*Pp;, Pd;;= Pe;;*Pp;; Pd;=Pe;;*Pp;,
======% : Fault excitation =~ === » : Faulty value propagation

Figure 4.1 Single stuck-at fault detection in time-expanded circuit.

In LBIST, Pej; and Ppj; of a stuck-at fault Fis can be estimated by computing the s™

controllability (C;;,s-) and the observability (0;;) of signal line i through the probabilistic

j/s
random pattern testability measure such as COP (controllability observability procedure).
Hence, the detection probability of Fis at the jth capture cycle denoted by Pdjjs can be
expressed by Pdijs=Cjj /s~ %0;;. For a multi-cycle test with M capture cycles, the fault Fis
would have M times opportunity to be excited by the capture patterns cii~cim, and Fis will
be detected out of once the fault is excited and propagated to the outputs. Hence, the

detection probability of Fis denoted by Pdis in a multi-cycle test is the complementary

32

probability of the case that Fis cannot be excited and propagated for detection at all

capture cycles, which can be expressed by:

M
Pdi/s = 1 - 1—[(1 - Cij/s“ X OU) (41)
j=1

To calculate the controllability and the observability of signal lines at each capture
cycle, we transform the CUT to M cycles time-frame expansion combinational circuit.
We initialize the 0/1 controllability (C;;/,9 and Cy;/,) of PI (primary input) and PPI
(pseudo-primary input: FF) at the first capture cycle to 0.5/0.5, then, calculate the value
of C;jjo and C;j/; for each gate at each time-frame. The observability of signal line at
each time-frame is calculated starting from the PO (primary output) and PPO (pseudo-
primary output) at the last capture cycle with initial value of 1.0, tracing back to the PI

and PPI until the first capture cycle.

Compared to the traditional scan test with a single capture, the multi-cycle test
shows the potential to improve the probability of fault detection for every single scan-in
pattern followed by multiple capture patterns. However, the fault detection in the multi-
cycle test depends on the controllability and observability of signal lines in the time-
expanded circuit, which is generally deteriorating, as the number of capture cycles

increases.

For demonstration, we conducted preliminary experiments on ISCAS89 and ITC99
benchmark circuits to evaluate the average 1-controllability and the observability of
signal lines at each capture cycle. Figure 4.2 shows the results. In Figure 4.2(a), it can be
observed that ITC99 circuits show higher 1-controllability, which implies the internal
states of these circuits are easy to be 1, whereas ISCAS89 circuits likely trend to be 0.
Figure 4.2(b) shows the standard deviation of 1-controllability of signal lines at each
capture cycle corresponding to the results of Figure 4.2(a), to demonstrate the impact of
increasing capture cycles on the controllability. The results show that the standard
deviation of 1-controllability becomes higher as the capture cycles increase, which
implies the controllability of more signal lines is biasing toward either 0 or 1; in other
words, the value of more signal lines in a large capture cycle would be most likely fixed
at 0 or 1 during the tests. For a signal line with stuck-at fault, higher 0-controllability (0-
bias) is helpful to excite the s-/ fault, whereas exciting the s-0 fault becomes difficult.
Moreover, the biased controllability of signal lines in a time frame would also affect the
path sensitization for propagating the excited faulty values to the FFs in the current time

frame. We insist on it as the root cause of FDD observed in our previous works.

33

Regarding the observability shown in Figure 4.2(c) and Figure 4.2(d), it can be
observed that in a 10-times expand circuit the value of more signal lines in earlier capture
cycles is more difficult to be observed from the outputs (scan FFs) after the final capture.
The deterioration of observability of signal lines at early capture cycles causes the faults
excited at an early capture cycle difficult to be propagated to the final capture cycle for

detection, which is the root cause of the fault masking.

59234513207 * s38584*b11 ~b12 =*-b14 ~=b15 ~=b20

0.75
0.7
> 0.65| ¢
= 0.6
o
% 0.55
§ 0.5 s — s s
3 0.45)
- 04
0.35
0.3
1 2 3 4 5 6 7 8 9 10 & 5 6
Capture Cycle Number Capture Cycle Number
(a) Average one-controllability of signal lines at each capture cycle (b) Standard Deviation of one-controllability results at each capture cycle
~-59234-+-513207+s38584b11 ~b12 =b14 =~b15 =b20 . 59234 ~-513207-+538584--b11 —=-b12 =-b14 -=b15 --b20
0.7 2 05
0.6 % 0(-)45
0.5 &
£ 00.35
3 04 5
g < 0.3
g 03 2025
S 02 & 0.2
e
0.1 2015
0 2 01
1 2 4 5 6 7 9 10 & 1 2 3 4 5 6 7 8 9 10
Capture Cycle Number Capture Cycle Number
(c) Average Observability of signal lines at each capture cycle (d) Standard Deviation of Observability results at each capture cycle

Figure 4.2 Testability vs. Capture Cycles

Based on the analysis presented above, we have determined that the primary factor
that affects the effectiveness of the multi-cycle test in reducing the number of scan-in
patterns and shortening the TAT of POST is the incompatibility between controllability
and observability in the time-expanded circuit under multiple capture cycles. Specifically,
we have found that the controllability bias of the signal line at earlier capture cycles is
smaller than that of later cycles, resulting in lower observability. This difference in
controllability bias and observability between earlier and later cycles can lead to reduced

effectiveness of the multi-cycle test.

We insist that reconciling the incompatibility of testability under the multi-cycle test

is necessary to improve the performance of multi-cycle BIST for scan-in pattern reduction.

34

Chapter 5

S. Test Point Insertion and Selection for Multi-Cycle

BIST

5.1 Test Points for Multi-Cycle BIST

In this chapter, we introduce the observation point and control point proposed in our
previous works [37][38][39][40][41] to address the Fault Masking and the FDD of the

multi-cycle test, respectively.
5.1.1 Observation Point: FDS-FF

To improve the observability of scan FFs at the intermediate capture cycles in the
time-expanded circuit, we proposed a new scan-cell design named fault-detection-
strengthened FF (FDS-FF) that can directly observe and keep the value of FFs captured

at each cycle.

I FDS-FF Port Function [Shift Mode|Capture Mode|User Mode
DATA DATA Datain | don't care o 0/
SEN-1—, SIN Scan-in 0/1 0/1 don’t care
N Q SEN Scan Enable 1 0 0
SIN T CLK Clock 010 010 010
SEQ_TEST_EN) FF SEQ_TEST_EN Tseq“e"t'a' 1 1 0
CLK est Enable
Status ISIN DATAAISIN DATA
(a) Logic design of FDS-FF (b) Operation mode of FDS-FF

CLK ° °

L _____________ L ____________________________ L _____________ L Normal Scan Chain
(_\ — !" \‘: —

SFF _,| SFF SFF .| SFF é 4

v
v
4

LFSR
Phase shifter
MISR

~————

- FDS-FF - - -FF [
a] ;
SEN _{ hp--mmm=—--{ | e] e o EeCE - "’ ----------

——

SEQ_TEST_EN FDS Scan Chain

CLK.

(c) LBIST with an independent FDS-FFs scan chain

Figure 5.1 The DFT architecture of FDS-FF insertion for LBIST.
Figure 5.1 shows the structure of FDS-FF and the DFT architecture for LBIST with

35

FDS-FF insertion. The output of CUT denoted as DATA is controlled by scan enable
signal (SEN) through a NOR gate, and a sequential test controls the scan-in test enable
signal (SEQ _TEST EN) through a NAND gate. The FDS-FF can work in three modes:
Shift, Capture, and User mode as shown in the table, where Shift and Capture modes refer
to as the Test mode, and User Mode refer to as the functional operation. The CUT will
work at the user mode when SEQ TEST EN and SEN are set to 0. In Test Mode,
SEQ TEST ENis set to 1, and the SEN signal controls the shift and the capture modes.
If SEN=1, the test pattern is loaded into FF. If SEN=0, the corresponding test responses
are captured. It should be noted that the test responses of CUT captured at each cycle are
XORed with the SIN, which is the data stored in the neighbor FF in the scan chain. In this
way, the test responses of each cycle can be compacted by the XOR gate, and the
compacted test responses will be applied to the next capture cycle as a new test pattern.
Since FDS-FFs observe and keep the capture response of CUT during the capture
operation, in order to avoid functional timing issues, all FDS-FFs are extracted to

constructed into a daisy chain and isolated from the other normal scan chains.

PI
O— [l Voo o
l | —_— s 7 _D PO
o < — IR — 1o
SI | I R [-1: """"" H H H |
FF oSt A FE B ! Fr
| E i E |
FF FF
| |
FDS- FDS
FF FF
| I
FF FF
| lso

Figure 5.2 Replace a scan-FF with FDS-FF to address fault masking.

Figure 5.2 shows the effect of FDS-FF to address the fault masking problem. In a
time-expanded circuit, some faulty values are successfully propagated to the FF at the
intermediate capture cycles; however, they would be masked before the final capture.
Replacing a scan FF with the FDS-FF is equivalent to inserting an observation point into
the time-expanded circuit to observe and keep these faulty values before they are masked.
However, it is impractical to replace all scan-FFs with FDS-FFs; the fault effects that
never pass through the selected FDS-FFs may disappear if they cannot be propagated to
the final capture cycle. Fortunately, replacing a small count of scan cells with FDS-FFs
could achieve significant fault detection improvement [38], which is beneficial for low
hardware overhead.

36

5.1.2 Control Point: Self-Flipping CP

Inserting control points into the circuit to force the target signal line to 0 (0-control)
or 1 (1-control) is a popular way to improve the testability of the circuit. However, it
would be challenging to adapt the conventional CPI to the time-expanded circuit under
multi-cycle BIST because 1) CP with a fixed control value during a complete capture
operation is less helpful to relax the controllability biasing; 2) generating the control
values for each capture cycle requires complex sequential ATPG; 3) applying the dynamic

control value to CP during the capture operation requires intricately designed control logic.

In [40][41], we have proposed an FF-CPI approach to improve the controllability of
the time-expanded circuit by modifying the captured values of partial scan FFs at each
capture cycle. The FF-CP compares the state of FF at the current capture cycle with its
state at the previous capture cycle and changes the current state to its inverse value if no
state transition occurs on the FFs during the capture cycles. In this study, we expand the
FF-CPI approach to control the combinational logic and propose the control logic that
can flip the value of the signal line of CP during the capture operation. We call it the Self-
Flipping control in this study described as follows.

Combinational Logic @Ti-1 Combinational Logic @Ti

.......... Scan-out

Scan-in

CP_OUT| CP_IN |CP_OUT
ECI:—IN \' CP‘OUTD CAP CTR| “Gri1 | @i @Ti
L, " 1 0 0 1
1 0 1 1
FF 1 1 0 0
l_,> 1 1 1 0
0 0 0 0
i‘ 0 0 1 1
0 1 0 0
DCAllCTR I_ICapture clock z : : ;
(b) Self-flipping control logic (c) The truth table of self-flipping control logic

Figure 5.3 Self-Flipping CP insertion for multi-cycle LBIST.

Figure 5.3 shows the design of the Self-Flipping control logic. In the capture mode,
the present state (CP_OUT@Ti-1: the state of CP after the previous capture cycle) and the
new state (CP_IN@Ti: the input value of the candidate CP of the current capture cycle) of
the CP are checked whether there is a transition occurs in the current capture cycle or not.

If not, the Self-Flipping control logic will generate the inverse value of the input state to

37

the CP output (CP_OUT@T;). An external control signal “CAP_CTR” is used to enable
the self-Flipping when set to 1. Otherwise, the input value of CP passes through the CP
logic to the output. It thus can keep the value of a target signal line at the adjacent time-
frame always different to relax the bias of 0/1-controllability caused by successive capture

cycles.

It is worth noting that a traditional inversion CP using an XOR gate would be
ineffective in reducing the 0/1-controllability bias because the 0/1-controllability of XOR-
CP output depends on the input signal line, which is biasing as increasing the capture
cycles. While inserting the Self-Flipping CP will cause hardware increase, it operates
automatically during the capture cycles w/o any external control, which does not cause the
extra cost in updating the ATPG to generate the deterministic control vectors.

To implement the proposed multi-cycle LBIST scheme for POST, the unknown
values (Xs) generated as switching the operation mode from test and function need to be
dealt with carefully. This issue can be addressed by separating the control logic of POST
from the test target of POST (CUTs) through wrapper logic. During the test operation, the
wrapped control logic of POST will be kept in function mode. When the test is completed,
the CUTs will be switched to the functional mode by a system reset through the control
logic of POST. The detailed solutions to handle the implementation issues for in-system-
testing have been published in [42][43].

5.2 TP Selection for Multi-Cycle BIST

This section introduces the procedure to determine the locations of CPs and OPs to
address the Fault Masking and the FDD problem induced by the controllability biasing

and observation deterioration under a multi-cycle LBIST scheme.

While the selection procedure inherits some underlying techniques proposed in our
previous works, such as the structure-based evaluation metric and the probabilistic
testability analysis of circuits for FDS-FFs and FF-CP insertion, in this study, we
consolidate them into a consistent process for TP selection under multi-cycle BIST
through the following efforts:

e We propose a new metric to evaluate the effect of candidate signal lines for CP
insertion under a multi-cycle BIST scheme.

e We introduce an improved probabilistic cost function for estimating the effect of
candidate TPs.

38

e We introduce an OP Pruning approach into the TP procedure to improve the

efficiency of TP selection under the multi-cycle BIST scheme.

It is worth noting that the proposed TP selection procedure conducts the probabilistic
evaluation to identify the candidate CPs and Ops. The proposed TP selection procedure
is a time-saving process because the procedure does not use the conventional fault
simulation. As a result, we obtain the list of the TPs, then we evaluate the fault coverage
achieved under the circuit with TPs by conducting the multi-cycle test fault simulation at

one time.
5.2.1 A New Evaluation Metrics for CP Selection

As discussed in Chapter 4, increasing the number of capture cycles would cause a
significant 0/1-controllability bias on signal lines at later capture cycles, which implies
the value of more signal lines in a large capture cycle would most likely fix at 0 or 1 in
most capture cycle. For a signal line x, if setting its value to 0(1) would cause fewer gates
with fixed output value in its arrival logic region to FFs than that of setting to 1(0), 0(1)-
controllability bias of x due to the multiple capture cycles would be helpful to fault
excitation and propagation we call it positive bias, 1(0)-controllability bias would obstruct
the fault detection called the negative bias. For the signal line shows a negative bias in
controllability, it is suggested to insert a self-flipping CP to relax its controllability bias
in the multi-cycle test. Following this, we propose the method to calculate the degree of

the 0/1 controllability bias when inserting a CP into the signal line.

o x: a signal line in the combinational circuit

® pwo: the probability of line x s value being logic 0

e pwi: the probability of line x s value being logic 1, where, px/i+px0=1.0

o fovu: the number of gates in the arrival logic region from line x to POs/PPOs whose
output value will be fixed, as setting the value of x to 0

o fovi: the number of gates in the arrival logic region from line x to POs/PPOs whose
output value will be fixed by setting the value of x to 1

e BD(x): the degree of controllability bias at line x that would impact the fault
detection, where BD(x)>(0 denotes a positive bias, BD(x)<0 denotes a negative bias.

BD(x)=(px0-px/1) % (fgx/1-fgx1) (5.1)

o CD(x): the degree of contribution to relax the controllability bias as forcing the 0/1-
controllability of line x to 0.5/0.5. CD(x)>0 denotes a positive contribution,
CD(x)<0 denotes a negative contribution that would be achieved by CP insertion.

CD(x)=(px0-0.5) Xfgxo+(px1-0.5) X fgx/1=(0.5-pxn0) X (fgxi-fgxn) (5.2)
We use the s27 circuit as an example for illustration, see Figure 5.4. For signal line
i, two paths connect with the PPO (FF2) through path 1: i - G5 — G7 — G8 — w, and

39

path 2: i —» G6 — G7 — G8 — w. When the value of i is 1, the output of G5, G6, and G7
will be fixed at 1, 1, 0, respectively, thus fgi/=3. When i is 0, the output of G5 and G6
depends on the other input signal lines » and ¢, which implies a 0 value at i cannot directly
cause any fixed gates on the two paths to FFs, thus fgiv=0. The probability of signal line
i s values pis1 and pin can be calculated using the COP measurement, which is 0.25 and
0.75. The degree of controllability bias is hereby BD(i) = 0.5%3 = 1.5, which represents

that the controllability bias at signal line 7 is positive to fault detection.

Primary Combinational Logic of s27 benchmark Primary
Inputs Output
— >

[

Scan-IN

FF1

FF2

Figure 5.4 The combinational logic frame of s27 circuit.

For the signal line with positive controllability bias, inserting a CP would cause
more fixed gates on the fault propagation paths to FFs with a negative contribution to
fault detection, e.g., CD(i)=-0.25%3=-0.75. Table 5.1 gives the evaluation value of some
signal lines shown in Figure 5.4. It can be observed that signal lines g and s show the
negative controllability bias in BIST, and inserting a CP to s would achieve the most

contribution to fault detection.

Table 5.1 Evaluation metrics of signal lines in s27

line # Jaw Jgwi Do D1 BD CD
h 0 2 0.75 0.25 1 -0.5
i 0 3 0.75 0.25 1.5 -0.75
n 0 1 0.75 0.25 0.5 -0.25
q 3 0 0.56 0.44 -0.36 0.18
N 0 2 0.27 0.73 -0.92 0.46

As shown in Figure 4.2, the controllability bias on signal line changes at different
capture cycles in the multi-cycle BIST. It becomes larger as increase the number of

capture cycles. Thus, the degree of controllability bias of signal line x: BD(x) and the

40

contribution of CP insertion to relax the impact of controllability bias on fault detection:

CD(x) can be easily extended for the multi-cycle test as follows.

BD(x) = WZQ%U/O — Pxj/1) (5.3)
=

CD(x) = WZ(M — Paiso) (5.4)
=1

where py/ and pxo denote the probability of line x’s value being logic 1/0 at the jth
capture cycle. We use CD as the evaluation metrics for searching the candidate signal

lines for CP insertion under multi-cycle BIST, which is described in the next section.
5.2.2 TP Selection Procedure for Multi-cycle BIST

The procedure consists of two phases, Phase 1: CP insertion under a time-expanded
circuit with full FF-observation, and Phase 2: OP is pruning to remove the impotent
observation points (FDS-FF).

In Phase 1, the CP selection will be performed at the time-expanded circuit with full
observation where the FFs at intermediate capture cycles are supposed to be observable.
This is because the purpose of self-flipping CP insertion is to relax the controllability bias
caused by functional operation at each time frame, but not to create long propagation
paths that can cross multiple time frames to the final capture cycle for observation which
is an arduous task. The algorithm for CP insertion is shown in Algorithm 1.

To evaluate the quality of CPs and OPs, cost function U as follows is widely used
in various TPI techniques.

U= Z ! (5.5)
IFl de/s '

Vx/SEF
In this work, we expand the cost function considering the fault detection model
under the multi-cycle BIST scheme, where the detection probability of the faults at a
signal line denoted by Pdys is calculated by

M
Py =1— ﬂu — (1= Cyjys) X Ox)) (5.6)
j=1

Cyjs and Oy denote the s-controllability and observability of signal line x at the jth
time-frame, respectively, computed by COP measure as discussed in Chapter 4. The
difference in U before (U”®) and after (U?) inserting a TP can be calculated by the
following equation to identify the most effective TP from a candidate TP list.

1 1

— _qJjtp — I
AU = U9 — [Jtr = Z (Pdorg pqP

) (5.7)
IFl Vi/sEF i/s i/s

41

Algorithm 1: CP insertion

Inputs:

net: original CUT netlist

M: the number of capture cycles

Nep: Maximum number of CPs
Outputs:

cplist[N,]: Selected CP list

nete,: CUT with CP insertion
Optional parameter:

CRipreshola: the threshold of cost reduction (>0)

Neana: number of candidate CP at each iteration of CP decision

Process:
1: cplist— @
2: cand — @ /*Candidate CP list for determining a CP*/
3. read circuit (net);
4: fix_gate cal(net); /*computing o, fev1™/
5: time_expansion (net, M);
6: full observation_point_insertion(net),
7: while |cplist|< N, do
8: cop_controllability(net.),

9: cop_observability(net.p);

10: CD calculate (net.);

11: cand — @;

12: for j=1 to # of available candidate CP do

13: cand[j] «<—unchecked signal line with the largest CD;
14: end for

15: if cand=0 then

16: return cplist, net.,; stop the process

17: else

18: U”¢=cost_computation(netq,,M);

19: for k=1 to Ncana do

20: neto,=insert candfkj cp to net.p;

21: update_controllablity observability(netcanasy, M),
22: AU =U"%-cost_computation(net., M),

23: Remove cand[k] from net.,,

24: end for

25: If maximum(AU)>= CRipreshola then

26: cplist[i]—cand[k];

27: end if

28: end if

29: insert cplist[i] to net — update net.,,
30: end while
31: return cplist, net.p;

End process

In Phase 2, we will remove the impotent observation points from the time-expanded
circuit to reduce the hardware overhead caused by FDS-FFs insertion, named OP pruning,
as shown by Algorithm 2. In OP pruning, the input is the time-expanded circuit with CP
insertion achieved at Phase 1 where all scan FFs are replaced with FDS-FFs for
observation during multi-cycle captures. We target on reducing the amount of FDS-FFs
to a user-specified number Nop by restoring the FDS-FFs that do not affect the fault
detection to scan FFs. As shown from line 14 to line 24 of algorithm 2, we compute the

cost U of each candidate FDS-FF when temporarily changing it to a scan FF which is

42

equivalent to a wire in the intermediate time-frame circuit, and remove the one which has

the least cost increase from the OP list.

The OP pruning is considered effective based on the following observations. 1) The
large number of signal lines usually can be observed by multiple FFs; 2) The FFs which
have larger observable logic regions could observe more fault effects. 3) The number of
FFs in a design is much smaller than that of signal lines, and exploring the inactive FFs

would be more time-saving than inserting OPs into the CUT.

Algorithm 2: OP Pruning

Inputs:

neteplisi: CUT with CP insertion

M: number of capture cycles

Nop:Target number of OPs (FDS-FFs)
Outputs:

oplist[No,]: FF list for FDS-FFs insertion

nety, : CUT with TPs (CP and OP)
Optional parameter:

Neana: # of candidate OPs at each iteration for OP pruning

Process:
1: oplist— @
2: cand — @ /* Candidate target OP list for pruning */
3: read circuit (net),
4: oplist— all FFs
5: structure_analysis(net);
6: FF ranking(oplist) /*Ranking the FFs by the approximate evaluation metrics proposed in [39]*/
7: while |oplist|>N,, do
8: for j=1 to # of available candidate OP do
9: cand[j] «—select an OP in the oplist in descending order which is unchecked;
10: end for
11: if cand=0 then
12: return oplist, net;,; stop the process
13: else
14: U”¢=cost_computation(nety M);
15: for k=1 to Neana do
16: remove cand[k] OP from net,,;
17: update_observability(net,,);
18: AU =U"%-cost_computation(net,, M),
19: restore cand[k] OP to nety,
20: end for
21: If AU =minimum then
22: remove cand[k] OP from net,
23: remove cand[k] from oplist;
24: end if
25: end if

26: end while
27: return oplist, nety,,
End process

5.3 Experimental Results

Experiments are conducted on ISCAS89 and ITC99 benchmark circuits to evaluate

43

the effect of TPI under multi-cycle BIST. A 16-bits internal type LFSR (characteristic
polynomial: X'®+X'3+X3+X*+1) with Phase Shifter generates pseudo-random patterns.
A parallel scan structure is introduced into the CUT that consists of multiple scan chains
up to 100 FFs in length (when the total number of FFs > 1600, the maximum length of
the chain is up to 200). A multi-cycle BIST logic/fault simulator that can simulate at most
50 cycles capture per pattern is implemented in-house for stuck-at faults testing. For
automotive ICs, the [SO26262 functional safety standard imposes at least 90% latent fault
metric (permanent fault) to meet the safety goal ASIL D. Therefore, in this study, we set
a target fault coverage 90% and evaluate the effect of the proposed multi-cycle TPI that
would make the classical on-chip pseudo-random TPG-based LBIST comply with the
[SO26262 standard. Table 5.2 gives the details of CUTs.

Table 5.2 Detailed information of benchmark circuits

L # of Ne N¢ #OPs (FDS-FFs
Circuit | # gate | # FF stuck-at fault (<1% ofpgates) (<5% 0? FFs) (<20‘;> of FFS))
$9234 | 5597 | 228 6927 55 11 45
s13207 | 7951 | 669 9815 79 33 133
s15850 | 9772 | 597 11725 104 29 120
s38417 | 22179 | 1636 31180 1141 85 327
s38584 | 19253 | 1452 36303 97 72 290

bll 437 31 1322 2 1 6

b12 904 | 121 2797 9 6 24

b14 4444 | 245 12811 44 12 49

bl5 8338 | 449 23528 8 8 89

bl7 | 22645 | 1415 65464 201 70 283

b20 8875 | 490 25338 88 24 98

5.3.1 Evaluation of the Efficiency of the Multi-Cycle Test

We first performed fault simulations on the regular scan testing with single capture
(SCAN) and multi-cycle testing with 2, 4, 6, 8, and 10 capture cycles, respectively, to
evaluate the effect of multi-cycle testing for fault detection, using 100k test patterns (scan-
in) generated by LFSR. Figure 5.5 shows the fault coverage of each circuit at different
capture cycle test when 100k patterns are applied. It can be seen that for most circuits,
multi-cycle test achieved an increase in fault coverage at 2 and 4 capture cycle. As
continuous increasing the capture number to 10 cycles, the increment of fault coverage is
slowing down or getting degraded. For $9234, multi-cycle test shows significant decrease
of fault coverage. It can be explained by the incompatibility of testability shown in Figure
4.2, where 10-cycle test caused a little controllability bias, however, significant

deterioration of the observability in the expanded circuit.

44

B scan B2-cycle 4-cycle B 6-cycle B 8-cycle 0 10-cycle

100

Fault Coverage (%)
[e] foe] e Nel
(=) W (=) W

~
W

~
(=

N
W

(o)
(=]

592-34 s13i07l 515850 s38417 538584 bl1
Figure 5.5 Fault coverage of benchmark circuit with 100k patterns.

Figure 5.6 shows the curve of the average fault coverage of all CUTs by increasing
the number of patterns. The horizontal and vertical axis shows the pattern number and the
corresponding fault coverage, respectively. The average fault coverage of all CUTs
confirms that multi-cycle test has a statistical improvement in fault detection for most
benchmark circuits compared with scan testing (SCAN). Applying 4 and 6 capture cycles
achieved the most fault coverage improvement, and the increment of fault coverage

becomes less as the number of capture cycles increases to 8 and 10 cycles.

Effect of multi-cycle test on the fault detection of benchmark circuits

ﬁ

92

91

90

89

88

Fault Coverage(%)

87
—SCAN —2cycles

~4cycles ——o6cycles ——8cycles ——10cycles

86

85

45095
46765
48435
50105
51775
53445
55115
56785
58455
60125
61795
63465
65135
66805
68475
70145
71815
73485
75155
76825
78495
80165
81835
83505
85175
86845
88515
90185
91855
93525
95195
96865
98535

f scan-in patterns

Figure 5.6 Scan testing vs multi-cycle testing.

The above observations fit the basic feature of multi-cycle testing discussed in

Chapter 4. Multiple capture operations would provide more detection opportunities for

45

the fault that the scan-in pattern cannot detect. Therefore, it is possible to improve the
fault detection of the scan-in pattern. However, the deterioration of testability of signal
lines in the time-expanded circuit would interfere with future fault detection as increasing
the capture cycles. To reinforce the effect of multi-cycle BIST on scan-in pattern
reduction, CP insertion and FDS-FFs insertion are introduced, and their effects are

described as follows.

5.3.2 Evaluation of the Efficiency of the CPI and the OPI

We conducted the CP selecting and OP pruning algorithm proposed in Section 5.2
on the benchmark circuits to identify a specified amount of CPs and FDS-FFs, where the
maximum number of CPs N¢p was set to 1% of the gate number of CUT, and 5% of the
FFs, respectively. The expected amount of FDS-FFs is set to 20% of the total number of
FFs in the CUT. The number of CPs and FDS-FFs are shown in the fifth and the sixth
column of Table 5.2, respectively. To demonstrate the difference between OPI and CPI,
we performed fault simulation under 10 cycles by individually inserting the identified
CPs and OPs into the CUTs, denoted by CP-ONLY and OP-ONLY, respectively.
CPI&OPI denotes inserting both the CPs and OPs into the CUTs. Figure 5.7 shows the
curve of average fault coverage of the benchmark circuits, increasing scan-in patterns to
100K under different DFT strategies. The figure only presents the curves up to S0K
patterns for demonstration. Full observation replaces all FF with FDS-FFs has been
conducted on the CUTs w/(w/o) CP insertion denoted by FullOB, CP&FullOB,
respectively. While it is not for practical use due to hardware overhead concerns, the
results represent the upper bound of the fault coverage possibly achieved by OPI, which
is used to evaluate how far the OP pruning has reached in identifying the OPs for FDS-
FFs insertion.

Compared to the regular scan test (SCAN), the multi-cycle test w/o TPI denoted by
“10-Cycle” in the figure achieved a significant fault coverage improvement where a
target fault coverage (90%) is attained by applying 14,260 scan-in patterns under a 10-
cycle test, which cannot be achieved by scan testing even with more than 100K scan-in
patterns. Replacing 20% of FFs with FDS-FFs (OPI-ONLY) further improved the fault
coverage and reduced the necessary scan-in patterns to 5,175 for the target 90% fault
coverage as well as the effect achieved by full observation (replacing all scan FFs with
FDS-FFs). The results demonstrate the effect of FDS-FFs insertion that directly observes
the values of FFs at each capture cycle to relax the fault masking problem in the time-
expanded circuit.

Note the fault coverage curve of CPI-ONLY in Figure 5.7, where we inserted 1% of

46

the gate number of CPs into the CUTs, and it shows almost the same fault coverage
improvement (<93%) and much more scan-in pattern reduction (2,195 for 90% fault
coverage) than that of OPI-ONLY. The results indicate 1) inserting Self-Flipping CP into
the CUT that relaxes the controllability bias in a time-expanded circuit is helpful in
improving the fault detection of capture patterns 2) the effect of CPI is limited due to the
fault masking problem in the time-expanded circuit. When inserting both the identified
CPs and OPs into the CUTs denoted by CP1&OPI, we achieved a sharp increase in fault
coverage compared to inserting CPs and OPs individually. The final fault coverage of
100K scan-in patterns increases to 95.01%. The number of scan-in patterns for achieving
90% fault coverage is drastically reduced to 585 (24.4X reduction compared to the multi-
cycle test). Note the fault coverage curve of 10-cycle (multi-cycle test) and the
CP&FullOB, which represents the upper bound of the fault coverage possibly achieved
by CPI&OPI, inserting both the CPs and OPs (CPI&OPI) identified by our proposed
method achieved remarkable fault coverage increase and pattern reduction that is very

close to the upper bound.

=24.4X reduction
5§5 by CPIZOPL 7 =77 educhor -8 14260 scan-in patterns by 10-Cycle Test to gain 90% fault coverage

2195 by CPL_ONLY
5175 by OPI_ONLY

98

9 | i

> el
e

?W

N\

Fault Coverage (%)

——SCAN 10-Cycle ——OPI_ONLY ——FullOB ——CPI-ONLY ——CPI&OPI ——CP&FullOB

Number of Scan-in Patterns

Figure 5.7 Fault coverage vs. Pattern number (scan testing, multi-cycle testing, OPI

and CPI under multi-cycle testing).

Table 5.3 and Table 5.4 show the detailed results of the final fault coverage achieved
by applying 100K patterns and the number of scan-in patterns for attaining 90% stuck-at
fault coverage, respectively. The experimental results when inserting fewer CPs (<5% of
FFs) into the benchmark circuits are also presented in the tables. The results show that

the 10-cycle test would cause the fault coverage loss in most ISCAS89 circuits (s9234,

47

s13207, s38584); however, it achieves a significant increase in ITC99 benchmark circuits.
Where ISCAS89 circuits show a much more testability bias, increasing the capture cycles
are vulnerable to fault masking and FDD problem. While inserting OP or CP individually
both improved the fault coverage and reduce the patterns for attaining 90% fault coverage
for all circuits, it suggests that combining the CPs and OPs can achieve the most pattern
reduction under the multi-cycle BIST scheme. Reducing the number of CPs causes a
corresponding degradation in the fault coverage and the scan-in pattern reduction,
however, the degradation is small, e.g., when reduce the number of CPs from 201 to 70
for b17 circuit, the fault coverage with 100k patterns decreased from 97.81% to 96.29%,
scan-in patterns for 90% fault coverage increased from 130 to 185. The reduction of scan-
in patterns compared to the multi-cycle test is remarkable for shortening the TAT of POST

with less hardware overhead.

Table 5.3 The final fault coverage reached by 100K scan-in patterns

Design for Testability Approaches

Cireuit 10 # of CP<1% of gates # of CP<5% of FFs
SCAN| ~ |OPL_ONLY|FullOB| # of | CPI- #of | CPI-
Cycle CPs | ONLY ICPI&OPICP&FullOB CPs | ONLY CPI&OPICP&FullOB

$9234(87.31|84.94| 89.94 [90.00| 55 | 82.69 | 89.68 91.80 11 83.3 87.96 88.02
513207/90.47184.81 | 9220 [9296| 79 | 86.16 | 92.75 93.89 33 | 85.6 90.1 91.01
s15850{87.51|87.73 | 88.48 [90.18 | 104 | 85.09 | 87.41 91.52 29 | 8647 | 87.71 90.77
s38417/95.16197.52 | 97.96 |98.03 | 141 | 98.19 | 98.66 98.72 85 | 98.00 | 98.55 98.62
5s38584{91.31] 90.81 91.59 [92.07| 97 | 91.16 | 91.70 92.28 72 | 90.27 | 90.93 91.53
bll [96.75196.75| 96.75 [96.75| 2 | 98.03 | 98.03 98.03 1 96.82 | 96.82 96.82
b12 [97.28]198.64| 98.68 [98.68| 9 | 99.18 | 99.21 99.21 6 97.6 97.6 97.64
b14 [85.61190.36| 90.38 [90.40 | 44 | 93.71 | 93.96 94.07 12 | 93.81 | 94.04 94.08
bl5 [69.75192.94| 9295 [9295] 8 | 9835 | 98.36 98.36 8 | 98.35 | 98.36 98.36
b17 [79.17192.85| 92.85 [92.86|201 | 97.76 | 97.81 97.83 70 | 96.27 | 96.29 96.32
b20 [84.69]189.52| 89.66 [89.69| 88 | 93.10 | 93.61 93.94 24 | 92.68 | 93.17 93.22

Table 5.4 The number of scan-in patterns to achieve 90% fault coverage

Design for Testability Approaches

Cireuit 10 # of CP<1% of total gates # of CP<5% of FFs
SCAN ~|OPI_ONLY/FullOB| # of | CPI- #of | CPI-
| _
Cycle CPs | ONLY ICPI&OPICP&FullOB CPs | ONLY ICPI&OPICP&FullOB

$9234 >100K[{>100K| >100K [>100K| 55 |>100K | >100K 9180 11 |>100K | >100K | >100K
513207]20560|>100K | 11565 | 7375 | 79 |>100K | 6050 4175 33 | >100K | 59835 8885
|515850 100K|>100K | >100K |68905| 104 |>100K | >100K 2380 29 |>100K | >100K 4710

|s38417 5780 | 1710 590 460 | 141 | 250 80 55 85 310 85 60
s38584] 8180 | 10645 3700 1960 | 97 | 1555 575 305 72 | 12795 960 330
bll | 475 | 120 120 120 | 2 45 40 35 1 115 115 105
bl12 | 1280 | 175 170 170 | 9 100 45 45 6 260 210 195
bl4 P100K]| 58280 | 58280 [53425| 44 | 1285 870 770 12 885 675 605
bl5 P100K]| 4180 4180 4115 | 8 285 230 170 8 285 230 170
b17 P100K] 4305 4300 4300 | 201 | 180 130 100 70 | 260 185 140
b20 P100K|>100K| >100K [>100K| 88 | 4330 2045 935 24 | 7480 3740 3685

48

5.4 Conclusions

The multi-cycle BIST has room for improvement to reduce the volume of scan-in
patterns. Therefore, this study investigated the stuck-at fault detection model in the time-

expanded circuit.

We revealed that the incompatibility between the controllability and observability
of signal line as increasing the capture cycles would induce the fault masking and fault
detection degradation problem. Those problems obstruct the effect of multi-cycle tests to
test pattern reduction. We introduced the TPI technique to a multi-cycle LBIST scheme
focused on reducing the volume of scan-in patterns for a target fault coverage to address
this issue. The TPI approach replaces partial scan cells with FDS-FF referred to as OPI to
enhance the observability and inserts Self-Flipping control logic into the combinational
logic referred to as CPI to relax the controllability bias of signal lines of CUT at the

intermediate capture cycles.

To identify the TPs that could achieve the most scan-in pattern reduction, we
proposed a metric called the CD (the degree of contribution to relax the controllability)
to evaluate the effect of candidate CPI signal lines and introduced an improved
probabilistic cost function for estimating the effect of CP and OP insertion under multi-
cycle BIST scheme. A TPI procedure including CP insertion and OP pruning is also
proposed to identify the effective TPs to achieve the most scan-in pattern reduction. The
experimental results on ISCAS89 and ITC99 benchmarks show 24.4X pattern reduction
on average that confirming the effectiveness of the proposed TPI for shortening the test

application time of POST.

In the future work, we will implement the proposed TP selection algorithm to
support the industrial design, to evaluate the effectiveness of the multi-cycle LBIST

scheme on the commercial automotive ECUSs.

49

Part III: Test to Memory-based Programmable

Logic Device

50

Reconfigurable devices (e.g., FPGAs: field-programmable gate arrays) allow users
to customize the functions in-field that provides a flexible (custom logic and routing) and
scalable (add new functions) platform for system development, with faster development
cycle time (better time-to-market), low design cost (e.g., IP reuse), high-performance
(high-speed hardware), and long-term maintenance (update function). Benefiting from
such abilities, FPGAs have gone successfully for many applications such as the IoT
(internet of things) [44], SDV (self-driving vehicle) [45], and Al (artificial intelligence)
[46].

However, FPGAs suffer from area, power, and delay due to programmable
interconnect resources [47][48]. Large amounts of interconnect resources also require
multi-layer wiring architecture and advanced manufacturing technology that causes
significant production costs. Large area, power, delay, and production cost issues prevent
the FPGA from more.

Recently, a new type of reconfigurable device called MPLD (memory-based
programmable logic device) [49] is under development for edge computing devices in
IoT and Al applications. In contrast to FPGAs, which require large amounts of
programmable interconnect resources to achieve programmability, MPLD is constructed
only with an array of MLUTs (multiple look-up tables) without any extra programmable
interconnect resources. An MLUT is the essential reconfigurable element constructed
using general SRAMs and connects with its neighbors via Address-inputs/Data-outputs
called AD interconnects. Users can configure wires and logic into MLUTs by writing the
corresponding truth tables into the SRAMSs. This feature enables high-density
reconfigurable devices with low production costs, low power consumption, and minimal

delay.

To guarantee the long-term reliability of MPLD, extensive production testing with
high quality is first required to identify as many manufacturing defects as possible in the
MLUT array. When the device is operating in the field, various hard-to-predict factors,
such as aging phenomena [50][51], and environmental factors including operating
temperature, power supply, noise, etc., can cause delay degradation in the MLUT array
of MPLD and threaten its long-term reliability [52].

In this part, we focus on the issues that would affect the long-term reliability of
MPLD. We propose a test method to address these reliability concerns to detect and
identify interconnect defects in the MLUT array during the production phase. We also

propose a delay monitoring technique to detect aging-caused failures in the field.

51

The proposed test method creates route maps in MPLD for fault propagation by
configuring pre-designed test cubes into the SRAM array, it then excites faults by
applying an external walking-zero/one vector to the external input ports of MPLD and
identifies any faults through fault effects propagated to the external output ports. The
delay monitoring method configures a novel ring oscillator (RO) logic design into MPLD
to measure aging-induced delays. We designed an MPLD with a 6x6 MLUT array to
evaluate the proposed methods by performing logic simulations. The simulation results

with fault injection confirmed the effectiveness of the proposed methods.
The main contributions of this part are as follows.

1. We explore the fault models of interconnect defects within the MLUT array of
MPLD.

2. We propose approaches to test stuck-at faults and bridge faults caused by
interconnect defects in the MLUT array during MPLD production. This
contributes to high reliability and yield improvement.

3. We propose a test method to accurately identify the location of faults. The
proposed test method improves the manufacturing process and enables the
avoidance of faulty MLUT blocks, thereby ensuring high reliability when the
MPLD is put into practical use.

4. We investigate the reliability issues induced by aging when the MPLD operates
in the field and propose a monitoring technique to measure the aging-induced

delay variations by configuring a novel ring oscillator logic design into MPLD.

The remainder of this part is organized as follows: Chapter 6 introduces the
architecture of MPLD and its basic working principle. Chapter 7 discusses the reliability
concerns in the lifecycle of MPLD. Chapter 8 proposes the production test solution for

interconnect defects. Chapter 9 presents the delay monitoring method.

52

Chapter 6

6. Memory-based Programmable Logic Device (MPLD)

This chapter gives an introduction to the architecture of the MPLD and its working

principle, in order to serve as a basis for the work that follows in Chapters 7, 8, 9, and 10.

The rest of this chapter is organized as the following: Section 6.1 introduces the
architecture of the MPLD by describing detailed its structure, main component elements,
and operation functions of these elements. Section 6.2 describes the working principle of
the MPLD through two examples of configuring logic circuits to a single MLUT and
multiple MLUTs, respectively. Finally, the chapter concludes in Section 6.3.

] Control Input Ports \
en_nl clkl ml_ctrl we_nl reset_nl

|
|

Row |
= Decoder| |[MLUT| [MLUT (X MLUT
) g
3 Logic Inputs 8
o —=h
] Column — o
o| |Decoder |MLUT MLUT| .-+ [MLUT .
E: 3
o (Memory Address g
s Logic Outputs | =
ogic Outputs |=
S| Memory Data-In 9 P fg
I o
1 @
2 __|Data Out MLUT| |MLUT oo MLUT
|| | Selector ||

(a) MPLD Structure
ml_ctrl

([srAM1 J [SRAM2
(Asynchronous (Asynchronous)

Memory Logic

v
Address/Data Memory-Logic Address/Data

Control Circuit

OCR
[SRAM3] [SRAM4]
(Synchronous) (Synchronous)
(b) MLUT Structure
Figure 6.1 MPLD Architecture.

6.1 MPLD Architecture

53

6.1.1 MPLD Structure: MLUTs (Multiple Look-up Tables) Array

Figure 6.1(a) shows the structure of the MPLD. it is constructed by an array of
reconfigurable cells named the MLUTs (multiple look-up tables). The MLUTs array can
work in either two operation modes: memory or logic operation mode, by manipulating a
memory-logic control signal ml_ctrl at an external input port of the MPLD. In memory
operation mode, a row decoder, column decoder, memory address bus, memory data-in
bus, and data out selector are used to configure (read out) data into (from) the MLUT in
the array, via external memory operation 10 (input/output) ports. In logic operation mode,
configured data can function logically in the array, driven by the external logic operation

input ports, and the function results are out to the external logic operation out ports.

Figure 6.1(b) shows the structure of the MLUT. Which is constructed by two
asynchronous SRAMs (SRAM1, SRAM2), two synchronous SRAMs (SRAM3, SRAM4),
a memory-logic control circuit, and an output control register (OCR). The asynchronous
SRAMs are used to create combinational logic functions, and the synchronous SRAMs
are used to create sequential logic functions. The memory-logic control circuit, driven by
the ml_ctrl signal, controls the memory and logic operation of the MLUT. The OCR is
used to control the logic data output of the MLUT.

6.1.2 MPLD Memory Operation Mode

The MPLD works in the memory operation mode when by setting the value of the
ml_ctrl signal to 0; this operation mod includes two operation options: the configuring
operation and the reading operation. In the configuring operation, the data contents in the
SRAMs and OCR of each MLUT can be configured. In the reading operation, the data
contents in the SRAMs can be read out.

Figure 6.2 shows the schematic of the MPLD working in the memory operation mod.
A we_n signal handles the two operation options; setting the value of the we_n signal to
0 allows the configuring operation, and conversely, setting it to 1 allows the reading

operation.

For the MPLD with a size of XxY (X columns and Y rows) MLUTs array, there are
log2X-bit column selection input ports, mlut x, and log2Y-bit row selection input ports,
mlut_y, are used to select an MLUT to be configured or read in the array, via respectively
the column decoder and row decoder, and are used to select the data output of an MLUT
from the array via the data out selector. The column decoder and row decoder respectively
generate X-bit column enable signals and Y-bit row enable signals, mlut c[X-1:0] and
mlut r[Y-1:0],to enable an MLUT in the array; where if the values both of mlut c[i] and

54

mlut r[j] are 1, the MLUT x;y; (where i € /0, X-1],j €[0, Y-1]) is valid for the configuring

or reading operation. A memory address input ports provide the memory address bus, mad,
directly connecting to each MLUT, to access the SRAMs or OCR in the MLUT, for
specifying a target address for the configuring or reading operation. In the configuring
operation, a memory data input ports provide the memory data-in bus, mdata_i, directly
feeding to each MLUT for supplying the data contents configured to the target address of
the SRAMs or OCR specified by mad. In the reading operation, a memory data out ports,

mdata_o, via the data out selector, out the data contents at the target address of the SRAM
specified by the mad, from the MLUT selected by mlut x and mlut y.

| Memory Data Out Ports |

| mdata_o
— Data Out elector R E—

— — _en_n I - -qreset_ n — —

IMLUT{| [->}MLUTLY| |... ~IMLUT| «ClK 2]
P "1 (XoYo) T (x1¥0) F (xxYo) o
) miut_r[0]]| Lr— — — mlut_c[0] 5
w 1 1 1 1 1 1 0O 5
2 2 HMLUTL | bMLuT IMLU 2 @

o - P b ot CIC) 5 —
,8,. g (XoY1) (x4y4) il XXYJ 5 %
= omlut_r[1] ro — mlut_c[1](|> Q
o 3 T
=] 8 - IT = T “m= () o
5 mlut_y|o @|mlut_x|3
I S : : .o o 5
5 8 11| | | 5 |2
3 AMLUT| Lot L. MeuT) S
@ (XoYy) { (x1Yy) { (xxyy) Z
mliut_r[Y] £E) e w i mlut_c[X]

/ B Mondata |
mli_ctrl | we_n

| Memory Address/Data Input Ports

Figure 6.2 Schematic of MPLD working in memory operation mod.

SRAM1
2"word X m-bit|

SRAM2
2"word Xm-bit
(Asynchronous) OCR (Asynchronous)

mdata_i

P
mad

o_mdata

vV V

SRAM3

2"word X m-bit

(Asynchronous) (Asynchronous)

Figure 6.3 Schematic of MLUT working in memory operation mod.

55

Figure 6.3 shows the schematic of the MLUT working in the memory operation mod.
Where for the SRAM with the size of 2"word Xm-bit, the mad are n+3 bits; both the
mdata_i and the mdata_o are m bits. The highest bit of the mad, mady+2j, is used to select
the OCR; the two bits of the mad, madm+i.n), are used to specify an SRAM from four
SRAMs; and the remainder n-bits of the mad, madn-1.0;, are used to specify the address
of the SRAM specified selected. The m-bit data contents in a specified target address can
be configured and read via the m-bit memory data inputs mdata i and the m-bit memory

data outputs o_mdata, respectively.
6.1.3 MPLD Logic Operation Mode

The MPLD works in the logic operation mode when by setting the value of the
ml_ctrl signal to 1; in this mode, the configured data can function logically in the MLUTs
array. Figure 6.4 shows the schematic of the MPLD working in the logic operation mod.
In the MLUTs array, each MLUT has m-bit logic address inputs Am-1.0 and m-bit logic
data outputs Dm-1.0, referred to as the m-pair AD interconnects, used for logic operation
mode. The logic address inputs of the inner MLUTs are connected to the logic data outputs
of its adjacent MLUTs. The logic address inputs and logic data outputs of the outermost
MLUTs are connected to the logic operation 10 (Input/Output) ports of the MPLD device.

AD intergonnects

e
. 51)
MLUT : : sl
MLUT MLUT —
—_MLuT . —MLuT
o e — = =S
MLUT— —MLUT —
MLUT — —IMLUT
= = —
:] :
10

Figure 6.4 Schematic of MPLD working in memory operation mod.

Figure 6.5 shows the schematic in the logic operation mode of an MLUT. Each

56

SRAM has the 2™?word xm-bit size accessed by m/2-bit address inputs and m-bit data
outputs. The low-order m/2-bit address inputs, Am-1.0, are shared by SRAM1 and SRAM3,
and the high-order m/2-bit, Am-1.m/2, are shared by SRAM?2 and SRAM4, respectively. An
address transition detector (ATD) circuit is put into the address inputs of the asynchronous
SRAM to detect the value changes coming from the data outputs of its adjacent MLUTs
at high speed for combinational logic operation. A logic output control circuit controls
the logic data outputs of MLUT by using an m-bit OCR, OR gates, and EOR gates.

1 2
* ° SRAM1 SRAM2 001
“11 16word x 8bit| o .| [16word x 8bit 1118
Z 1; (Asynchronous) g V=1 (.- | (Asynchronous) 4221~ <(1]
A0— s | | [A7
vl | e i DI 5y
A1-H] 7
{ L] A6
D1 (CC— = D6
A2 2SS & 1 A5
D2 (CC“ =="Da D5
A3 7 - A4
3 (_C [e D4
] x | 4
(d30 ~ d37 d4o ~ d47\
a3s Logic 2
a3, SRAM3 . |Output Control SRAM4 . a4,
a3,16word x8bitl circuit [16word < 8bit ,
i (Synchronous) (Synchronous) 1
a30 a4

Figure 6.5 Schematic of MLUT working in memory operation mod.

Input Switching

Output Switching

Change Detection

‘ atdin_en,l “a atdpul‘se ‘
A = \ volaly
D-fageh Constant Dela D:fF
l—t:l7)
A = N 212
As N —~— 213
— I) v ™~ v
a tdce_n
atd -

Figure 6.6 ATD circuit.
Figure 6.6 shows the ATD circuit structure. it comprises an address input switching

unit (AISU, containing D-latch components), an address change detection unit (ACDU,
containing constant delay components and signal change detection logic), and an address

output switching unit (AOSU, containing D-FlipFlop components). The ACDU controls

57

the AISU via a signal atdin_en and the AOSU via a signal atdpuise. When the ACDU detects
that no address change occurs, it generates an enable signal atdin en to enable the D-latches
in the AISU to switch the address input of the MLUT (e.g., 4o to A3) and performs signal
change detection for them. Further, if the ACDU detects an address change, a pulse signal
is generated on atdpuise to trigger D-FlipFlops in the AOSU to switch the address input
(Ao~A3) of the MLUT to the address input (alo~al3) of the SRAM. In addition, atdce »
and atd.i signals will be output to drive the SRAM.

Equivalent Logic AOZ:D_' D, Ag::Do—v D,

1
g;k—> A, A, di, ¢ D, A, A, d1, C, D,
d3i—— +D,"0 o0 o0 o o0 0 ©0 o0 1 1
d4,—, 0o 1 1 0o 1 0o 1 1 1 0
. 1 0o 1 0 1 1 0 1 1 0
Ci=0 1 1 1 0 1 1 1 1 1 0
OCR A A,—>
0 0
a, g, A D A P D
d2, D, A A dl, C, D A, A, dl, C D,
d3,) 0 0 0 0 O 0 0 o 1 1
d4, 0 1 0 0 O 0 1 0 1 1
C.=1 1 0 0 0 O 1 0 o0 1 1
e 1 1 1 0 1 1 1 1 1 o0
i — A— D, A°—>D0—> D,
d3—> »Dy A, dl, C, D, A, di, C, D,
d4,—, 0 0 0 0 0 0 1 1

Equivalent Logic 1 1 0 1 1 1 1 0
Figure 6.7 Functional operation of logic output control circuit.

Figure 6.7 shows the functional operation of the logic output control circuit. The Ci
of the OCR controls the logic data output of the MLUT Dx, as an input to an EOR gate to
enable this EOR logic. The other input of the EOR gate is the output of an OR gate. The
inputs of the OR gate are the k-th data outputs of all SRAMs (d 1k, d2k, d3k, d4x). In essence,
this output control circuit performs the following logic function:

Dir=Ci® (dlx V d2r NV d3k V d4x) (6.1)

When Ck = 0, this output control circuit is equivalent to an OR logic for k-th data
outputs of all SRAMs:

Di=dlx NV d2r V d3k NV d4 (6.2)

When Ck = 1, this output control circuit is equivalent to a NOR logic for £-th data
outputs of all SRAMs:

Di= dI,Vd2,Vd3V d4, (6.3)

By using the output control circuit, i.e., OCR, OR, and EOR, various types of output

logic functions can be implemented in the MLUT for its logic inputs, such as common

58

logics like OR, NOR, AND, NAND, INVERTER, and wiring. The most important role
of the OCR is to control the output logic function of the MLUTs in the logic mode without
changing the contents of the truth table back to the memory mode.

In such architecture, each MLUT can work in either memory or logic operation
mode. In memory operation mode, users can access (read/write) data as a regular memory
block. When the MLUT is used as reconfigurable computing, first it is needed to put the
MPLD in the memory operation mode to write the truth table of the logic function into

the corresponding SRAMs, then, switch the device to the logic operation mode.

6.2 MPLD Work Principle

AT D00 RTD-D RT)D-b Ao

1
Truth Table1 D, Truth Table2
Address Inputs Data Outputs Data Outputs Address Inputs|
A3|A2 | A1|A0 D7~D3 D2 |D1|DO0||D7|D6 D5|D4 D3~D0 A7 |A6|A5 A4
00 0|0 00,0 170]0 0 0/0|0
0|00 1 00,0 1,01 00|01
0|0 1|0 00,0 1701 0 0/1]|0
0|0 |1 1 0|0 |1 1700 00|11
0100 010 171]0 0 1/0|0
* * * * 0 * * * o * * * o * * * *
17011 1711 0/0|0 17011
1771/0|0 1111]0 0/1|0 171/0/0
17101 1111]0 0|11 1/1]01
171]/1]0 1111]0 0|11 171(1]0
17111 11111 0/ 1|0 11111
1 To SRAM1 RAM2
(=] Oy
% OCR =
_all-0
N JH
A0— <_q~ | A7
DO D7
Al —»J l A6
D1 (¢ _Dj D6
A2 A5
D2 <_¢ §>) D5
A3 “ A4
D3 D/ D4
A
Logic
Output Control
Circuit

Figure 6.8 Logic configuration in a single MLUT.

Figure 6.8 shows an example to configure logic gates and wires in an MLUT. Here

59

we use two asynchronous SRAMs to configure an AND gate, an OR gate, and a wire into
SRAMI, an XOR gate, a wire, and an INVERTER into SRAM?2. We choose the address
Ao and A7 of MLUT as the AND gate’s inputs, 42 and 43 as the OR gate’s inputs, 4+ and
As as the XOR gate’s inputs, 47 as the INVERTER’s input, the data output Do, D1, D2, D4,
Ds, and Ds as the output of the AND gate, OR gate, wire 43 — D2, XOR gate, wire 45 —
Ds, and INVERTER, respectively. We represent the AND, OR logic, and the wire 43 —
A in the truth tablel, the XOR logic, wire A6 — Ds, and the INVERTER in the truth
table2. In memory operation mode, we write the truth tablel and truth table2 into the
SRAMI and SRAM?2, respectively. Since the data outputs of SRAMs are connected to
each other (by OR gate) and controlled by the OCR. We need to set the value of the
remaining data outputs of SRAMs to all-zero and the OCR to all-zero. In logic operation

mode, the MLUT will execute the configured logic and wires as a combinational logic
block.

Figure 6.9 shows an example to configure a logic circuit in two MLUTs. The circuit
has two inputs a and b, two internal signal lines ¢ and d, and an output e. First, the logic
partition is performed to divide the circuit into two sub-logics. Then, determining the
address input and data output lines of the MLUTs according to each sub-logic (e.g.: a —
Ao, b— A1, c — Ds,and d — D4), and computing the truth tables of the sub-logics. Finally,
writing the truth tables in the SRAMs within the MLUTs.

aHAo&cqos <:: E%_. :> D5 ofMLUT1—>A5:D%2fMLUT2He
e
b—A1 d—D4 Logic Logic” D4of MLUT1-A4

Partition Logic circuit Partition

Truth Table of MLUT1 Truth Table of MLUT2
Address input Data output Address input| Data output

A3]A2[A1]A0]D7]D6[D5[D4]D3[D2][D1]DO) A7]A6[AS[A4|D7]D6]DSD4[D3[D2[D1]D
ofoJofofoToJoJoJoJoloTo ofloJofoJolofofoJoJolo]o
oloJoft]oloJoloJolofo]o A0 MLUT1 D7 oflof1fololofofololo]!
ofo]tfofoo]ol1]oJoloTo D i A7 ofoftfoJooofolololo]t
oloft]t]olol1 t]ololo]o0 A D6 ofofJt[tJoJoJofoJoJo]o]t
of[t]ofoJoo]oJoJololoTo D1 A oft]ofofofofoloJolo]o]o
of[t]oft]oloJoJoJoJoloTo oft]JoftJoloJoolololo]t
ol1]t]ofoloJolt]ololo]o > A2 D5 A5 D2 oft]tfoJolooololo]o]t
oft]tft]olo1]1]ololoTo D2 A5 Db A2 oft]t[tJoJooololo]o]t
1loJofofofoJofo]olo[o]o “A3 | D4 A D 1{ofolofolofofofofo]o]o
t]oJol1]olo]ofololo]o]0 ~D3 A4 DA A3 t{ofJoft]oJoofololo]o]t
tloftJofolofof1]olo]o]0 — = t{oftfofJofoofolololo]t
t{oft[r]olol1T1]ololoTo A7 DO <¢:]1 oft[t]Jololololololo]t
t]t]ofofolofofofolofo]0 D7 A t{t]ofofolololofololo]o
t]t]ol1]olofofofofofo]o A6 D t{t]Joft]JofoJofoJololo]t
t]t]tJofoloJol1]olo]o]o D6 | A t{t]1Jo]olololofolofo]1
tltfifiJoToliifofoToTo - t[t]iTiJoTololofololo]t

MLUT2
Figure 6.9 Configure a logic circuit in two MLUTs.

It is worth noting that wires can be configured in MLUTs as logic interconnects

which can provide smaller delay and lower power consuming than FPGA.

60

Chapter 7

7. Reliability issue in MPLD

As a novel type of programmable logic device under development, and given its
promising features of low production cost, reduced power consumption, minimal delay,
fast data processing, and high flexibility, the MPLD is poised to revolutionize various
applications, including IoT and Al edge devices. However, it is crucial to acknowledge
that the MPLD’s reliability can potentially be compromised by manufacturing defects
during the production phase and aging in the field use phase. The implications of
reliability degradation can impede the practical use of MPLD. Therefore, it becomes
paramount to prioritize the resolution of reliability concerns to ensure the long-term
dependability of the MPLD device. By addressing these challenges head-on, we can
confidently unlock the full potential of the MPLD and enable its seamless integration into

a wide range of cutting-edge technologies.

This chapter introduces the factors that affect the long-term reliability of MPLD in

the production phase and the field use phase, respectively.

The rest of this chapter is organized as the following: Section 7.1 introduces the
reliability issues caused by manufacturing defects during the production phase of the
MPLD, with the focus revolving on interconnection defects between MLUTs. Section 7.2
describes reliability issues caused by aging when MPLD is operated in the field, focusing
on ATD circuits in MLUTs that are sensitive to aging. Finally, the chapter concludes in
Section 7.3.

7.1 Manufacturing-Defects-caused Reliability Issue

In the production phase of the MPLD, as depicted in Figure 7.1, a multitude of
defects would be present in the SRAM memory of the MLUT. While conventional
memory testing methods can address these memory defects, however, there are also
numerous defects that would arise between MLUTs, particularly in the form of
interconnect defects that occur at the logic address input lines and logic data output lines
of MLUTs. These interconnect defects encompass problems like shorts, bridges, and open
circuits, all of which can lead to significant losses in yield and a decline in the reliability
of the MPLD. Therefore, the focus of this study is placed specifically on tackling the

interconnect defects that occur at AD interconnect between MLUTs.

61

- 1T TE] IYE] _
H= =] =]
ey .
= — — — Defect in MLUT
H— - —] . — X —4|
= — — — — —
M= hmm— mm— — = =
= — — —_ — —H
1 % —— ... =] % [
e "] — — P
ey m— ma ey hamary i Y
M — — 3} — — —
] 3 [- — — 1]
= — pa— — — =
ey] mary — hamary i Y
v e — — — — —
— — — R
— pum—t — —F
=] =] e
— pammd — —P

10
10

: Interconnect :
Defect between MLUTs
MR

if

il

|HH 1313

1v] K2

10
Figure 7.1 Manufacturing defects in MPLD.
Interconnect Defects

As described in Section 6.1.2 of Chapter 6, the address inputs of a target MLUT
come from the data outputs of its adjacent MLUTs. A defect at the AD interconnect would
change the value of the address inputs of MLUTs, which cause access errors and results

in logic faults in the configured circuit.

Figure 7.2 shows the example of an AD interconnect-defect-caused fault, which
assumes that an OR-logic is configured in an MLUT (Ds = 41 V Aop) through the truth
table. For a defect-free device, when the all-zero 00000000 are applied to the address
inputs of the MLUT, the corresponding contents 00000000 stored in the SRAM will be
readout and the OR gate will output 0 (Ds: 0). If there is a short interconnect defect
between the supply and the address input 4o of the MLUT, which will fix the value of 4o
at logic 1. In this case, the normal address of all-zero 00000000 will be changed to
00000001, which causes an access error where the content of 0010000 at the address
00000001 is read out, thus the output of the OR gate Ds will output 1.

0AQ I— D70,
0 D0 A7 0
0A1 i D6 0
> : e
A defect pllvk il i <60
changes 0A2 ; D5 0{1 Logic
address value| 9 D2 | —A50 fault
— —
0A3 D4 0I
0 D3 A4 0
Look-up table stored in the MLUT
Address | Data
Correct |A7TA6/A5A4A3A2A1/A0|D7 D6D5D4D3D2D1 DO
access “Alg 0 0/0 00 0 0/J]O 0/ 0O/0O OO0 O
Access {0 0 0 0 0 0 0 1/0 01 0 0 0 0 O
error 00000010/00100000
* * * * * * * * * * * * 0 0 o 0
111111110 0100000

Figure 7.2 Interconnect defect causes logic fault in configured circuit.

62

7.2 Field-Aging-caused Reliability Issue

When the MPLD works in the field for a long term or under a severe environment,
various aging phenomena such as HCI (hot carrier injection) and BTI (bias temperature
instability) [50][51] would cause delay degradation that threatens the long-term reliability
[52] of the MPLD. As described in Chapter 6, the MPLD is composed of a large number
of MLUTs arranged in an array, and each MLUT is placed independently in the MPLD.
During the operation of the MPLD, as shown in Figure 7.3, it is considered that the
progress of the aging at each single MLUT is different. When configuring a logic circuit
into the MPLD, the progress of aging at the often-used MLUTs would be faster which
causes more extra delay. As the aging progresses, the variety of aging-induced delays at
MLUTs would affect the performance of the configured logic circuit, and even worse, the

delay at the MLUTs with faster aging progression could cause a sudden system failure.

| 10 |

N
N

319 1979 J91% T97¥

10

(1114l
IR

(TS

(L1

10

Aging Progression

Slow

T
IR I AR

=
|

I ATiiNiil

=
I

1v] yiv

|
Figure 7.3 Aging progresses in MPLD.

o

In an MLUT, the two main components are vulnerable to the aging phenomena: the
SRAM and the ATD circuit. The aging phenomena like BTI crucially impacts SRAM,
which can degrade the static noise margin (SNM: a critical reliability metric for SRAM)
and lead to read stability issues and potentially cause failure [54]. For the aging effects in
the SRAMs of each MLUT, such as read/write delay, existing memory delay testing
methods can be employed to detect it during the memory operation mode of the MPLD,
which will not be described in more specific detail in this study. Therefore, this study
focuses on the aging effects occurring in the ATD logic for each MLUT.

Aging Effect in Address Transition Detector (ATD) Circuit
As described in Section 6.1.3 of Chapter 6, in each MLUT, the asynchronous

63

SRAMs use the ATD circuit to at high speed detect the input address change to execute
asynchronous operations. The ATD circuit is extremely sensitive to the delay variation.
The aging phenomena like HCI and BTI would increase the threshold voltage of the
transistors in the ATD circuit, which could slow down the switching speed [53] and might

cause false detection of the address change.

As demonstrated in Figure 7.4, the ATD circuit will generate an atdpuise signal once
detected any value changes in the address inputs (40.3) of MLUT and switches 4o:3 to the
address inputs (a/0:3) of the asynchronous SRAM1. Suppose that 01010 is applied to 4o
at time totst2t3t4, respectively. When a transition occurs at 4o, the ATD must detect the
value change and transfer the transition to a/o in a very short delay. Aging-induced delay
at the ATD logic would generate an anomalous atdpuse signal to switch the Ao to alo,

which causes false detections for the 4o at #2, t4 and result in a/o being 01111 at fot1t2¢3t4.

Address Input Switching ~ Address Change Detection Address Output Switching

EY atdin_en‘ £y atdpul‘se Y |
A, = E i g)
D-fatch Constant Dela D-LF
A1 ,—F Y| | | ?‘l 311 SRAM1
L‘:'7) 16wordx8bit
A, = S [~ [a1;|(Asynchronous)
A = 5 BN CLEY
7 L atd., ,
—I atd,
to t1 t t3 Uy to t1 t; t3 Uy
A [LT 1 L 1
atd |—| |—| |—| |—| Aging |—|
pulse cause ATD -
aly, _ [1T L |slowdown
atd,, [[JL [[[
Correct detection Incorrect detection

Figure 7.4 Aging caused ATD detection error.

7.3 Conclusions

In the production phase of the MPLD, there would be many kinds of defects exist in
the SRAM memory of the MLUT. For these memory defects, conventional memory
testing methods are available. On the other hand, there would also be lots of defects
between MLUTs, especially the interconnect defect on the logic address input lines and
logic data output lines, such as short, bridge, and open circuits, these defects would cause

significant yield loss and reliability degradation.

In addition, when the MPLD works in the field, various aging phenomena such as
the HCI, and BTI, would cause aging-induced delays in the MLUTs array of the MPLD.

64

The aging progress in the MLUTs array should be different. The often-used MLUTs
would have a faster aging speed which means the aging-induce delay would be large. The
variations of aging-induce delay would affect the performance of configured logic circuits

and even cause a system failure, which would threaten the in-field reliability of the device.
Therefore, from this chapter, two important items can be put forward:
To guarantee the long-term reliability of the MPLD, the

1) During the production phase, it is necessary to perform high-quality tests for the
interconnect defects on the logic address input lines and logic data output lines of the
MLUTs.

2) In the field use phase, it is necessary to employ an aging monitoring approach to

measure the aging-induced delay variations in the MLUTs.

To address the above two items, a test method for identifying interconnect defects
is proposed in Chapter 8. A delay monitoring method to measure the aging-induced delay
of the MLUTs is proposed in Chapter 9.

65

Chapter 8

8. Interconnect Defect Test for MPLD

In order to improve the yield and guarantee the reliability of the MPLD device,
extensive production tests with high quality are required to detect as many manufacturing
defects as possible that exist in the SRAMs and the AD interconnects between MLUTs.
The former defects can be tested by conducting the existing test technologies of SRAM
memory [55][56]. For the latter, we have analyzed the interconnect fault models including
the stuck-at faults and bridge faults at the AD interconnects between the MLUTs, and
proposed the test approaches for detecting the stuck-at fault and bridge fault, in [57][58].

Besides fault detection, fault diagnosis is also known to play an important role in
improving the yield and reliability of products. In manufacturing, identifying the location
of the interconnect faults in the MLUTs array is beneficial to improving the process. In
addition, when the MLRD is put to actual use in the field, identifying the interconnect
fault is helpful to avoid configuring the logic into a faulty MLUT block for high reliability.

The fault diagnosis for locating the interconnect fault in the FPGA device has been
investigated deeply [59][60]. In [61] a universal fault diagnosis technique is presented for
locating the interconnect fault in the CLBs array of an FPGA device. This method can
identify all faulty points in the CLBs array through two steps: the horizontal diagnosis
and the vertical diagnosis. For the MPLD device constructed by the MLUTs array, the
basic idea presented in [61] would be also available to identify the AD interconnect faults
between the MLUTs. However, implementing the horizontal and vertical diagnosis in
MPLD must be considered carefully, because the interconnects between MLUTs are un-

reconfigurable.

This chapter arm to present the test method to identify the AD interconnect faults
between MLUTs of the MPLD device, for improving the manufacturing process and
voiding a faulty MLUT block for high reliability when the MPLD is put to practical use.

The rest of this chapter is organized as follows: Section 8.1 reveal the interconnect
faults models including stuck-at and bridge faults between MLUTs in MPLD. Section 8.2
present the test method to identify the interconnect faults and deals with the generation
of data for testing. Section 8.3 shows the results of the logic simulations for evaluating
the proposed test method. The proposed methods are discussed in Section 8.4. Finally,

Section 8.5 make concludes this chapter.

66

8.1 Interconnect Fault Models in MPLD

This section scrutinizes the two primary types of faults resulting from interconnect
defects between MLUTs, namely stuck faults and bridged faults. These interconnect faults
lead to the alteration of the value of the logic address input of the MLUT, and have the
potential to compromise the normal functioning of the logic circuitry configured in the
MLUT. As a consequence, these interconnect faults may cause the generation of
erroneous logic outputs at the value of the logic data output of the MLUT.

8.1.1 Stuck-at Interconnect Faults

A stuck-at fault that occurs at the AD interconnect between the MLUTSs in the MPLD
is referred to as a stuck-at interconnect fault. This type of fault may arise due to the
presence of an interconnect defect such as a short between the ground or supply and the
AD interconnect. As a result of this defect, the logic address input of the MLUT becomes
fixed at either logic 0 or 1, which can significantly impact the normal functional operation
of the MLUT. The presence of a stuck-at interconnect fault could lead to incorrect logic
outputs being produced at the value of the logic data output of the MLUT. This issue, if
left unaddressed, could ultimately cause significant damage or malfunction of the MPLD.
Therefore, it is crucial to promptly identify and resolve any instances of stuck-at

interconnect faults to ensure the continued reliable performance of the MPLD.

Figure 8.1 depicts the behavior of stuck-at interconnect faults, and in the event of a
stuck-at occurring at M;Ds—M:2A4s, the M24s value would be fixed to 1 or 0, depending

on whether a stuck-at-1 or stuck-at-0 occurs.

—_— — /| D5——e—>a5 |

- [M1 VDD |m2 Logic behavior of stuck-at-1

— — | ba Jag | M1D5 | M2A5

I MLUTI (1) [D5 . as kAt 0 o/t

— A5 pud 1 1

—_— D4 . —

— ‘A4._,.-" «— Logic behavior of stuck-at-0

T o5 |1/ — MLUT2(M2) |_ M1D5 M2A5

M1 GND (2 | » «— -— 0 0

| D4 »lAd | - — 1 110
Stuck-at-0 — | —

Figure 8.1 Stuck-at interconnect fault models.

8.1.2 Bridge Interconnect Faults

A bridge fault that occurs at the AD interconnect between the MLUTs in the MPLD
is referred to as a bridge interconnect fault. This type of fault may arise due to the presence

of an interconnect defect such as a short between AD interconnects. This defect may result

67

in either a wired-OR (OR-bridge) or wired-AND (AND-bridge) logic function depending
on the utilized logic circuitry. The former is referred to as OR-bridge interconnect fault
and the latter as AND-bridge interconnect fault. An OR-bridge interconnect failure causes
shorted AD interconnects to be OR-ed together, and the output value of the OR-ed is
assigned to each of the shorted AD interconnects. Similarly, an AND-bridge interconnect
failure causes shorted AD interconnects to be AND-ed together, and the output value of
the AND-ed is assigned to each shorted AD interconnect. Therefore, bridge interconnect
faults caused by such an interconnect defect would also change the value of the logic
address input of the MLUT, which also has a significant impact on the normal functional
operation of the MLUT. Therefore, it is also crucial to promptly identify and resolve any
instances of bridge interconnect faults to ensure the continued reliable performance of the
MPLD.

Figure 8.2 demonstrates the behavior of bridge interconnect faults. In the event of a
bridge occurring between M:Ds—M2A4s and M1D4—M2A44, an AND-bridge interconnect
fault would cause a faulty value of 0 at M2A45 (M244) when M outputs logic 1 (0), 0 (1) at
M 1Ds and M 1Dy, respectively. Conversely, an OR-bridge interconnect fault would cause
a faulty value of 1 at M2A4s (M244) when M; outputs logic 0 (1), 1 (0) at M;Ds and M:Da.

— S T ps A5 a;Logic behavior of AND-bridge

- — w1 m2| M1D5M1D4M2A5M2A4

— — | pa Ad | 0 0 0 0

D -— AND-bridge 0 1 0 1/0
MLUT1 (M1) | DS . A5, 1 o0 |10 o

= ot - il

p A — ATDSMIDANZASNZA

MLUT2 (M2

‘| D5 A5 [T M2) — 0 00 o

M1 M2| » “— DY 0 1 o1 1

| D4 Clag | - — 1.0 | 1 on

OR-brldge S | G 1 1 1 1

Figure 8.2 Bridge interconnect fault models.

8.2 Test Method for Interconnect Faults

In our research presented in [57][58], the test methods were proposed for detecting
both stuck-at and bridge interconnect faults in the MLUT array. These methods were able
to achieve high fault coverage while requiring fewer test configurations for fault detection.
However, identifying the location of faults is crucial for improving the manufacturing
process and ensuring the proper functioning of the MPLD when in practical use, such as
to help the user to void the use of a faulty MLUT block. Therefore, in this study, we aim
to extend the previous test methods proposed in [57][58] to include the identification of

locations of interconnect defects.

68

For programmable devices, Prior research on fault localization for FPGAs has been
conducted and is discussed in [59][60][61]. These studies proposed sophisticated methods
for fault localization in FPGAs, with [61] presenting a universal fault diagnosis technique
that can locate interconnect faults for the CLBs array of an FPGA. This method utilized
a two-step horizontal and vertical diagnosis process to locate all faulty points for the
CLBs array. Although the basic idea in [61] is applicable to the MPLD constructed using
the MLUTs array, the interconnects between MLUTs are unconfigurable, unlike FPGAs.
Therefore, careful consideration should be given to implementing the horizontal and

vertical diagnosis in MPLD.

In this study, we present a novel test method for detecting and locating faults caused
by AD interconnect defects, including stuck-at and bridge faults. Our approach is based
on the fault detection idea presented in [57] and the fault localization idea in [61]. By
building on the previous research, we aim to improve fault detection and localization in

MPLDs and contribute to the advancement of manufacturing processes for these devices.

8.2.1 Test Strategy for Fault Detection and Location

Interconnect Fault Detection Idea. Since the logic address inputs of an MLUT come
from the logic data outputs of its neighbor MLUTSs, the logic data flow in MPLD expresses

as the following:
external input — [address — — address — — ... | — external output.

Where the indicate the data configured in an MLUT, and the address before a
indicate the logic address inputs of the MLUT that stores the . A fault at the AD
interconnect can cause a change of the value at the logic address input that would access
a different content of the data configured in the MLUTSs and in turn may result in different
output values than fault-free at the logic data outputs of the MLUT, and ultimately, may
produce incorrect values to the external logical output ports of the MPLD. Therefore, the
idea of the test method presented in [57] for detecting the interconnect faults of MPLD,
is to configure the internal test data into the SRAMs of MLUTSs, apply the external test
data to external logic input ports, and observe the fault effects at the external logic output
ports of MPLD by performing the logic operation. The two kinds of test data are defined

in [57] as follows.

Definition 8.1 7est cube. the internal test data stored in the SRAMs of MLUT in MPLD,

which can propagate fault excitations and fault effects for AD interconnect faults.

Definition 8.2 External pattern. the external test data applied to the external logic input

ports of MPLD as fault excitations to excite AD interconnect faults.

69

The test data flow in MPLD expresses in the following:

external pattern — [excitations— —> fault — — ... | — effects.

Figure 8.3 shows the concept of detecting interconnect faults under this idea. The
test cubes are configured in the memory operation mode. In logic operation mode, the
configured test cubes propagate the external patterns (fault excitations) applied to external
logic input ports to excite the interconnect faults and propagate the fault effects to external
logic output ports. At the external logic output ports, the fault effects can be observed,

and the faults are detected.

]) ... ‘lExternaI Pattern
?] = ? ? g mExternal Output
= 1 | . —1
2= ~—| I— 4—' Fault
O Test ool Test Effect
o= Cube 3 Cube — — ==
[H — —p 5|
[Test G R Test =
m— — Cube — — '° | Cube .
o Test Test [e— — |
B— Cube — —| Cube — pum—a .
[H i — —p |
[Test | — G Test =
—— Cube — 7 —=] Cube =
: — — |
. . C— 0
m [—— — [m—
= : > — ———
= Test [e— +— Test j«—
m— Cube —| Cube —* — " a
= : : REEY —p 5|
Cube . Cube S
i 0
— —
uln lD o cee UlD
5] 5]

l:igure 8.3 Interconnect fault detection idea.

The critical point of this test idea is to generate test cubes and external patterns. In
[57], The test generations of the test cubes and external patterns for detecting stuck-at
interconnect faults and bridge interconnect faults have been presented. In the presented
test generations, the test generations for the stuck-at interconnect faults can detect all the
stuck-at faults. However, at that time, the test generations for bridge interconnect faults
did not consider detecting all bridge interconnect faults; in order to consider any bridge
fault interconnects, also based on this test idea, in [58], the additional test generations
were presented to cover the detecting of the bridge interconnect faults that were not
detected in [57].

This study aims to present novel test generations for test cubes and external patterns,

which can not only detect but also locate the interconnect faults, the idea of locating

70

interconnect faults are as follows.

Interconnect Fault Location Idea. For fault location of programmable devices, [61]
presented a universal fault diagnosis technique that can locate interconnect faults on the
CLBs array of an FPGA. The basic idea of this method is to utilize a two-step diagnosis
process, step 1 for horizontal diagnosis and step 2 for vertical diagnosis, to locate the

faulty CLBs in the array. Figure 8.4 shows this universal diagnosis procedure.

Input sequence Input sequence
k> > k> >
]]] I
K] v Vv [3K] +r v
1 1 — 1 1 —Error
k> - k> e
| | | |
¥ | 3K 2 2K] [3K 4
> > Output
] | | |
sequence 1 ; 13 o |
> - - ey
| | loutput |
[] Faulty cLB Error sequence
(a) Step 1, horizontal diagnosis. (b) Step 2, vertical diagnosis.

Figure 8.4 A universal diagnosis procedure for FPGA [61].
In this diagnosis procedure, the interconnect structures are specially configured. In

the horizontal (vertical) diagnosis, for the CLBs in a row (column), the output line of each
CLB except the last one is configured to connect with an appropriate input line of the
CLB following it; the output line of the last CLB is configured to connect with an I/O
block as the primary output for output sequence observing; the other input lines of each
CLB are configured to connect with the remaining I/O blocks as the primary inputs for
input sequence applying.

By applying the input sequence to the primary inputs at I/O blocks to perform
respectively the horizontal and vertical diagnosis to the CLBs array, horizontally and
vertically to propagate the fault, the faulty CLB can be located by observing the output
sequences from the primary outputs at the I/O blocks.

This diagnosis method provides an applicable basic idea to locate the interconnect
faults for the MPLD constructed using the MLUTs array, however, the interconnects
between MLUTs are unconfigurable, unlike FPGAs. Therefore, careful consideration
should be given to implementing the horizontal and vertical diagnosis in MPLD. The test

strategy for locating the interconnect faults in MPLD is described as follows.

Test Strategy for Interconnect Fault Location The main idea for identifying an

71

interconnect fault between MLUTs is to create the proper paths on the MLUTs array
which can propagate the fault effect across the MLUTs array to the expected logic output
ports of the MPLD for fault localization. Since the interconnects between MLUTs are not
configurable like FPGAs, it is impossible to directly configure the connections between
the interconnect and any specified MLUT or any specified external port. Therefore, to
create proper propagation paths, an optimal way is to take full advantage of these MLUTs,
since they are reconfigurable, to realize proper propagation paths by configuring each
MLUT with the logic function that can properly route the fault effects on the logic address
inputs to the expected logic data outputs. The routing logic in each MLUT navigates the
propagating of fault effects like a map, as defined in the following.

Definition 8.3 Rout map. a logic function configured in the MLUT that can properly
propagate the fault effects on the logic address inputs to the expected logic data outputs.

A simple type of rout map is the wiring logic. For an MLUT with m-pair AD
interconnects (m-bit logic address inputs and m-bit logic data outputs), there are mPm = m!
kinds of wiring patterns to connect the address inputs with the data outputs. Therefore,
the number Ny of the wiring-type route map for the MLUT with m-pair AD interconnects

can be expressed as the following equation.
Nrm(m) = mPm = m/! (81)

Figure 8.5 shows all 24 route maps to create the data paths between the address
inputs and data outputs of an MLUT with 4-pair AD interconnects. Where the labeled 7,
2, and 3 are referred to as horizontal, vertical, and diagonal route maps, respectively. By
implementing these route maps as test cubes configured into the SRAMs of the MLUTS,
the test procedure can be realized to locate the AD interconnect faults in MPLD, like the

horizontal and vertical diagnosis processes for FPGAs proposed in [61].

— i e e -t - -t I oof—
1 — fp —p o —pt —f —fi R e A e

- - . — e e e ole— e e bl 2
- -t — = e =i e — - —

Figure 8.5 Route maps for an MLUT with 4-pair AD interconnects.
Figure 8.6 shows the testing mechanism under route maps to locate an interconnect
fault. The (a) and (b) represent the testing under the horizontal route map and vertical
route map, respectively. From these two testing processes, we can observe the fault effect

from two different external output ports, and obtain two different fault propagation paths,

72

FP® and FP?. Via the intersection of obtained fault propagation paths, the fault location

can be identified.

:it IAI :IA JiA
1L | oy (@ E=E | (b)
, Fault it
Effect i nd
...... A e b o nn o w .y
[~ : [= = =
1L 1 ¥ R (R3] 28

Figure 8.6 Testing mechanisms under route maps to locate an interconnect fault.
For the stuck-at faults in any AD interconnects of the MLUTs array, configuring
either the horizontal route map or the vertical route map into the MLUTs would detect all
faults and identify the location of the faults by configuring the two maps in order. For the
bridge faults, an additional diagonal route map is considered necessary. The procedure of

the proposed test method based on the route map is as follows.

Test Procedure
Definitions:
* Nym: number of route maps, it can be calculated by equation 8.1.
e rmj: route map i, i€ [1, N,,].
« TCV: test cubes implementing rm.
* Nee”: number of observed fault effects under rm;.
» FPy7: fault propagation path k obtained under rm;; k€ [1, N, FE(i)].
« FPY: fault propagation path set under rm;.
* Fioe: fault location

Process:
(1) Test under rm; for i€ [1, N,,,]
(a) Configure TC” into each MLUT to create rm..
(b) Apply external patterns to the input ports of MPLD.
(c) Observe fault effects. If Npe'” == 0, end testing (fault-fiee).
(d) Obtain the fault propagation path set:
FPO= UM P (82)
(2) Identify fault location:
Fioe= NYm FPY (8.3)

The next section presents the test generation of the test cubes (TC” for rm;) and the

test generation of the external patterns for exciting stuck-at and bridge faults.

8.2.2 Test Generation

Test generation of test cubes for implementing route maps Since the MLUT can be

73

allowed to arbitrarily configure the logic by designing and storing the corresponding truth
tables in SRAMs of the MLUT, the test generation of the test cube for implementing the
route map to an MLUT is to design the corresponding truth tables that can be stored in
the SRAMs of the MLUT and are capable of representing the route map. For an MLUT
with m pairs of AD interconnects (A/m-1:07, Dym-1:07) and constructed by four 2"?word xm-
bit size SRAMs, the test cubes, for implementing the horizontal, vertical, and diagonal

route maps, are generated as follows.

Where TC”, TC?, and TC® indicate the test cubes that implement the horizontal,
vertical, and diagonal route maps, respectively; and rmi, rm2, and rms indicate the
horizontal, vertical, and diagonal route maps, respectively. Each test cube consists of two
truth tables, truth table 1, and truth table 2, to create the route of the address inputs Am-
1:0 and Am-1.m/2 of the MLUT, respectively.

Test cube generation
[TC? for rm;]
truth table 1: For the SRAMs to share the low-order address inputs (Ami-1.01) of an MLUT,
set the contents of the address lines Afw/-1:0) to
Dim-1:m2 = Afo-mn-13,
D107 = all-0.
truth table 2: For the SRAMs to share the high-order address inputs (A m-1:m2;) of an MLUT,
set the contents of the address lines Afm-1:m/2) to
Dii-1:m27 = all-0,
Dims-1:00 = Apmiz:m-1).

[TC? for rm;]

truth table 1: For the SRAMs to share the low-order address inputs (Am-1.01) of an MLUT,
set the contents of the address lines Aw-1:0) to
D[m_1;m/2] = all-0,
Diwpr-1:00 = Afo:mi-1).

truth table 2: For the SRAMs to share the high-order address inputs (Am-1:m2;) of an MLUT,
set the contents of the address lines Afm-1:m/2) to
Dim-1:m21 = Apmizem-1j,
Dimz-1:00 = all-0.

[TC® for rm;s]

truth table 1: For the SRAMs to share the low-order address inputs (Am-1.01) of an MLUT,
set the contents of the address lines Aw/-1:0) to
Dp-1:m21 = Apmsaem-17 - Apo-ma-17,
D[m/z_];()] = all—O.

truth Table 2: For the SRAMs to share the high-order address inputs (Ajm-1-m27) of an MLUT,
set the contents of the address lines Apm-1:ms2j to
D[m_];m/Z] = all—O,
D100 = Apmiam-17 * Apmrz:3mia-1).

For easier visibility, described above test generation of the test cubes for rmi, rmo,

and rms; 1s also tabulated in Table 8.1.

74

Table 8.1 Test cubes to create route maps for the MLUT with m-pair AD interconnects

Route Maps Test Cubes
truth table 1 gm-frm/z - jl%z.z
rm;: horizontal route map TCY i -
truth table 2 Doim2 = all-0
Dyo-1:0 = Ampzem-1
truth table 1 gm—]:m/Z := ZZZ—O
rmy: vertical route map rc? w2:1:0 = Aoz
truth table 2 [Rmetm2 = Amizim-1
Dyo-1:0 = all-0
truth table 1 Don-i:mr = Ampgemsr-1 * Aomia-1
rms: diagonal route map TCc® Dp-1:0 =_ all-0
truth table 2 Ptz = all-0
Dr1:0 = Aszmsam-1 = Amsz-3ma-i

Figure 8.7 shows an example of the TC” configured in asynchronous SRAMs of an
MLUT with 8 pairs of AD interconnects. For each MLUT, we write truth table 1 and truth
table 2 in the SRAM1 and SRAM2, respectively. In truth table 1, the low 4-bit data outputs
Dys.07 for all addresses are all-0, and the high 4-bit data outputs D;7:4 for each address are
Ajo:3). In truth table 2, the high 4-bit data outputs D;7.4 for all addresses are all-0, and the
low 4-bit data outputs Dys.07 for each address are 4/4:77. Because the data outputs D;7.07 of
SRAMI and SRAM?2 are connected by OR function as illustrated in Figure 6.5, the data
outputs Dy7:07 of each MLUT are the values of address inputs 4;0:7;. i.e. the address line
Ak is connected to the data output line D7« for each MLUT, thus the construction of the

propagation path of the fault from the horizontal direction is realized.

Truth table1 Truth table2
Address | Data Address | Data
A3A2A1A0D7D6D5D4D3~D0j A7 A6A5A4D7~D4D3D2D1D0|
0000|0000 0000 0000
0001|1000 0001 17000
00100100 o0 (JOO10f 0 0100
* k k k| k Kk * * * k * * * k| k%
11111111 17111 1111

=V | D5,
SRAM3 w A D2] A3
SA3) D4 A3l] | D4,

AL D3| A4
Figure 8.7 Example of test cube in the MLUT for horizontal route map.

ekl el
Hit;
g..

alsk

lele

el

Figure 8.8 shows an example of 7C® configured in asynchronous SRAMs of an
MLUT with 8 pairs of AD interconnects. Where, the data outputs Dy7.0; for all addresses
are /000040A14243] and [A44546470000] for SRAM1 and SRAM2, respectively. i.e. for
each MLUT, the address line A« in the low 4-bit address (k =0, I, 2, 3) is connected to the

75

data output line D7.k+4 and the address line Ax in the high 4-bit address (k = 4, 5, 6, 7) is
connected to the data output line D7--¢, thus the propagation path of the fault from the

vertical direction is created.

Truth table1 Truth table2
Address | Data Address | Data
IA3A2A1A0D7~D4D3D2D1D0| JA7/A6/A5A4(D7D6D5D4D3~D0
0000 00O0O0||/OO0OO0O/OODOO
0001 17000|]/0001({1 000
0010 0 0100f|O01O0(01TO00 O
* %k k% * ki k% * % % % | *x Kk * *
1111 1111|1111 (1111

m%bﬁ*&

~ ik
i
El
mﬁ

Figure 8.8 Example of test cube in the MLUT for vertical route map.
Figure 8.9 shows an example of 7C?® configured in asynchronous SRAMs of an
MLUT with 8 pairs of AD interconnects. For each MLUT, the address line Ax for & = 0,
1, 4, 5 is connected to the data output line D7.x+2), for k = 2, 3, 6, 7, to D7.x-2), thus the

propagation path of the fault from the diagonal direction is created.

Truth table1 Truth table2
Address | Data Address | Data
A3/A2A1/A0D7|D6D5D4D3~D0| |A7/A6/A5A4]D7~D4D3D2D1D0
0000(0O0O0O 0000 0000
001/0010 0001 0010
oo10/0001 o0 ||OO10f 0 O0O0O0T"1
171111111 1111 1111

[srams ﬁ. Zail-
A8 DB
D5 A2 |:
SRAM3 w prodir e
D4, ﬁ,.-"
A4 D3|
Figure 8.9 Example of test cube in the MLUT for dlagonal route map.

R RERE

- Bl b

Test generation of external patterns for exciting AD interconnect facts Since the
conditions of fault excitation are different for different types of AD interconnect faults, it
is necessary to consider different external patterns to excite different target faults at AD
interconnect faults in MPLD. The conditions of fault excitation for different types of AD

76

interconnect faults are listed as the following.

* Stuck-at-1 (stuck-at-0) interconnect fault excitation condition is that the value 0 (1)
must be assigned to the interconnect fixed at 1 (0).

* AND-bridge (and OR-bridge) interconnect fault excitation condition is that the two
values 01 or 10 must be assigned to the two interconnects bridged.

Based on the above fault excitation conditions, as shown in Table 8.2, four external

patterns are applied to the external input ports of MPLD to excite the AD interconnect
faults and are defined as follows.

Table 8.2 External test patterns applied to external inputs of MPLD

Fault Types External Test Patterns
stuck-at-1 all-zero vector: [0...0]
stuck-at-0 all-one vector: [1...1]

AND-bridge walking-zero vector: [1...1 01...1]
OR-bridge walking-one vector: [0...010...0]

Definition 8.4 A/l-1/0 vector. A sequence of binary values where all elements are 1/0.

Definition 8.5 Walking-1/0 vector. A sequence of binary values where a single 0/1
“walks” through a series of 1s/0s.

The all-zero (all-one) vector is used to excite the stuck-at-1 (stuck-at-0) interconnect
fault and the walking-zero vector (walking-one vector) vector is used to excite the AND-
bridge (OR-bridge) interconnect fault. Where the sequence length of each vector is equal
to the number of logic input ports of MPLD, i.e., depends on the size of the MLUTs array.

Figure 8.10 shows the mechanisms of applying external patterns. The (a), (b), (c),
(d) show detect a stuck-at-1, stuck-at-0, AND-bridge, and OR-bridge fault, respectively.

A

o

Fault-free Faulty Walking-0 Fault-free Faulty

CARRAN
|0} |o)
Externall External n n
Input Output [o] 1]
= MPLD = [o] [o] (c)
L] L]
[o] [o]
[o] | [o]
/o)

Fault-free Faulty

External

Output
MPLD

(@)

-3
S
X

Fault-free Faulty

Externall External
Input Output

]
= MPLD = E
[1]

External|
Output

(b) MPLD =

Figure 8.10 Applying mechanisms of external patterns.
Figure 8.11 and Figure 8.12 show the example of applying the all-zero vector and
the walking-zero vector to excite a stuck-at-1 (sal) and AND-bridge (ANDbd)
interconnect fault in an MPLD with 2x2 MLUTs array, respectively. Figures (a) and (b)

show the test under rm; and rm>. The rm; and rm:> are respectively created by TC” and

77

TC® stored in SRAMs to propagate the fault effect along with the horizontal and vertical
routes. When applying the all-zero(walking-zero) vector to the external inputs, the
sal(ANDbdJ) tault is excited, and the fault effect(s) 1(0s) will be propagated to the external
output ports for observation. As shown in the figures, the route that reaches the external
output ports is individual; we can thus obtain the fault propagation path set on both the
rmi and rm2: FP(V and FP?, by observing the fault effects mapped on the external output
ports. We can locate the fault by equation 8.2, and equation 8.3:

Floe = FPV 0\ FP? (for the ANDbd, FP?V = U}_, FP\", FP® = U]_, FPY).

all-zero

00 all-zero 0 0
=] [l=]
(a) ofo (b) olo
T m] T]
g @| Fault | | |0B—m—f; J
0 — FP au [
B—g— 0B—g—=|- 5
0 sal ./ Effect [l'sat
0 = Sy frrreetens -l 1 0 0 0 £ YRIN e,
0 -0—.—' -3 0 ol |0 0 e
0B—s—t @0 0E—Fg=F
0 0 [et
085 B0 g |95
0Bt 20 0m——=—t-|-
0B B0 g0 0m—JE=k
5= P
[T =° ——
% é | *Fault
Effect
== oo
00 00

Figure 8.11 Apply all-zero to excite stuck-at-1 fault.

walking-zero /_I\ walking-zero 1T 0
B =
(b) I
i pl = =
- 18— 5
1 .T— m 1 1
Bffect
L 1B~ (-
Oo— % 1 .T: 1 1
FP(l)’
e B~ e+ =
—aF 1—g== 01 &4
-0 1 1
l—»l FP%Z),y [- 1 1
1 + Fault 3 * Fault
il 1 Effect. ! Effect
11 0_0 —/

Figure 8.12 Apply walking-zero to excite AND-bridge fault.

8.3 Simulation Results

To verify the proposed test method, we performed logic simulations using ModelSim
by injecting fault nodes to the netlist of the MPLD we designed.

78

The designed MPLD has 36 MLUTs arranged in a 6x6 array as shown in Figure
8.13. Its external logic 10 ports include 48bit left/right 10s: li/47:0], lo[47:0], ri[47:0],
ro[47:0] and 20bit top/bottom 10s: #i[19:0], to[19:0], bi[19:0], bo[19:0]. Each MLUT
has 16-pair AD interconnects (A415.0, D1s:0) and consists of four 256word % 16-bit SRAMs
including two asynchronous SRAMs: SRAMI, SRAM2, two synchronous SRAMs:
SRAM3, SRAMA4.

| Top 10 ports: ti[19:0], to[19:0] |

200 TTTT T2 1] Ll

| — |
[«<—>|AD1 AD14 AD1 AD14 AD1 AD14
l«—>|AD2 AD1 AD2 AD1 AD2 AD1
l«—>|AD3 AD12| AD3 AD12 AD3 AD12
[«—>AD4 AD11 AD11 AD: AD4 AD11 AD11 AD AD4 AD11 AD11 AD4 |
34—>AD5 AD1 AD10 AD AD5 AD1 AD10 ADS5 AD5 AD1 AD10 AD5
- [«—>|AD6 AD9 AD9 AD6 AD6 AD9 AD9 AD AD6 AD9 AD9 AD
'; l«—>|AD7 AD8 AD8 AD7 a0 AD7 AD8 AD8 AD7 AD7 ADS8 AD8 AD7[+—>|
5 e XAY002 5552 1 X3Y0 ...) XBYO0)
=t X0yt | x2ytl |] XY) =
e x1y1 x3y1 , [OEET X5y1 foe|
'; DU . S PUR P DY » et AT lgmenras >l o
o R x0y2 X2y2 X4y2 =
E— €rnnnns] » | @asenes » l@eonins = L » TEPPP » —_—
T x1y2 x3y2 X5y2 f+s| @
b R xo 3 P » x2 3 D »| l=snasl »| 4 3 l€nanees »| ';
9 Yo, .. Yo ... aeie] XAY9 | =
5 x1y3 x3y3 X5y3 [l =
of | ova [y ova [Dzl laveraens] ;
= x0y4 | X2Yy4 |, PN 7 V7 N P o
- 0 5 X1y4 2 5 < »| X3y4 e >l 4 5 le »| X5y4 e g-
s X0Y5 [+ X2y5 [e x4y5 [+ o
[«—>|AD4 AD1 AD11 AD4 AD4 AD11 AD11 AD AD4 AD11 AD11 AD4 E
[«<—>|AD5 AD1 AD10 AD5 AD5 AD1 AD10 AD AD5 AD1 AD10 AD o
[«—>AD6 AD9 AD9 AD6 AD6 AD9 AD9 AD AD6 AD9 AD9 AD6 n‘:
|L___|~—|AD7 ADS8 AD8 AD7 AD7 AD8 AD8 AD7 AD7 ADS8 AD8 AD7[+—>]
AD15 ADO AD15 AD AD15 ADO
AD14 AD1 AD14 AD1 AD14 AD1
AD13 AD2 AD13 AD2 AD13 AD2[¢+—>]
AD12 AD3 AD12 AD3J AD12 AD3[+—>| |
r x1y5 ‘—l r x3y5 hl r x5y5

| Bottom IO ports: bi[19:0], bo[19:0] |

Figure 8.13 MPLD with 6x6 MLUTs array.

The processes of performing logic simulations are as the following.

1: We injected a stuck-at-0 (sa0) fault at x2y1A2 (address line 42> of MLUT x2y;) and
an OR-bridge (ORbd) fault between x4y2A1 and X4y4A3.

2: In the memory operation mode of the MPLD, we configured the test cubes into
SRAMs of each MLUT to create the route maps.

3: In the logic operation mode, we applied external test patterns all-one(walking-

one) vector to external logic input ports (/i, i, ti, bi) to excite the injected sa0(ORbd) fault.

4: We observed the fault effects at external output ports (/o, ro, to, bo) and located
fault location through the fault propagation paths of the observed fault effects.

8.3.1 Verification of Testing to Stuck-at Interconnect Faults

The simulation results of testing the sa0 fault under the rm(rm2) are shown in Figure
8.14(Figure 8.15). Before we enable the fault injection sa_fltinj en (=0), the MPLD is
fault-free, and its output ports are all-1. When enabling sa_fltinj en (=1), xzy14:2 is fixed

79

to 0 and the value 0 of the fault effect is propagated along the horizontal(vertical) route
to the port 70/6](bo[14]) (=0). The sal propagation path set on the rm; and rm2, FP” and

FP®@, can be determined:
FPY = {1i[10] — x1y0d13 — x291A2 — x3y0413 — x4v142 — x5v0413 — ro[6]},

FP? = {ti[14] — x1y0As5 — x2y142 — x1y1A5 — x2y242 — x1y245 — Xx2y3A42 — X1Y345
— x24A2 — x1y4A45 — x2v542 — x1y545 — bo[14] }.

The sa0 can be located:

Fioe= N7, FP? = FPU N FP? = x3y14;.

60ns 70ns 80ns 90ns 100ns 110ns 120ns 130ns 140ns 150ns 160ns 170ns 180ns 190ns 200ns 210ns

tbmrld/elk LML rrLrerierrreriererereerererer

tbamrld/1i[47:0] JEEEREERNENNNNNNRNanRanneanaaanuanninennsnenein|

tbomrld/ri[47:0] I011100 1001101101 00110 1011100101111 11111111111

tbanrld/ti[19:0] T 10]

tbmrld/bi[19:0] T 1T
tbamrld/sa-fltinj_en

tbamrld/mrld/sa0-f1tloc-x2ylA2 1
tbmrld/10[47:0] ILITITLITI LI LT I I e I It I InInInItiqngng

thmrld/ro[47:0] T T X O O O 0T T
tbomrld/to[19:01] T T
tb-mr1d/bo[19:0] T 01

Figure 8.14 Simulation result of the test under »m; for sa0.

60ns 70ns 80ns 90ns 100ns 110ns 120ns 130ns 140ns 150ns 160ns 170ns 180ns 190ns 200ns 210ns

tbamrld/elxk Lo rirrirrrrertrrererererererier
tbmrld/1i[47:0] ILITITIILIT T T I I I T I It e T InItIuItiqnlng
tbmrld/ri[47:0] I011100100 1100101100010 1201101111111 11911111111
tbomr1d/ti[19:0] ILLITLITLITLLIt0LLtl
tbamr1d/bi[19:0] JRRERERNENERNENNENEN!
tbamrld/sa-fltinj_en
tbamrld/mrld/sa0-f1tloc-x2ylA2 1
tbmrld/1o[47:0] ILIITIITIT T T I I I T uInt qnInItIuItiqnlng

thmrld/ro[47:0] T T
tbomrld/to[19:0] T T
tbmr1d/bo[19:0] T 11T X 0TI

Figure 8.15 Simulation result of the test under rm. for sa0.

8.3.2 Verification of Testing to Bridge Interconnect Faults

The simulation results of testing the ORbd fault under the rmi(rm:2) are shown in
Figure 8.16(Figure 8.17). A bridge fault is injected into the MLUT array by setting
bd _fitinj en to 1. The x4y2A4;and x4443 are bridged by the OR logic function:

x40 = x24170 = x024170 NV x4p445°7 = 1.

The fault effect value 1s are propagated along horizontal(vertical) route to respectively
the port rof13] and ro[31](bo[5] and bo[7]) (=1). The ORbd propagation paths can be

80

obtained:
FP?U ={1i[17] — x1y1A14 — x2241 — x3v1A14 — X492A1 — x5v14A14 — ro[13] },
FPg) ={1i[35] — x1y3A12 — x2v443 — x3v3A12 — X494A3 — x5v3412 — ro[31] },

FPgZ) ={ti[5] — x390A6 — x4y141 — x3v1A6 — X492A1 — X3V246 — x4y341 — X3V3A6
— x494A1 — x3y4A6 — x4y541 — x3y546 — bo[5] },

FPSZ) ={ti[7] = x39044 — x4y143 — x3y1A4 — X4y243 — X3V244 — X4v3A43 — x3Y344
— Xqp4A3 — x3y4A4 — x4y543 — x3544 — bo[7] }.

The ORbd can be identified as:

Fioe = N2y FP? = L (UL FPY) = (FPY U FPY) 0 (FPP U FPY) =
{ X241, x49443 }.

60ns 70ns 80ns 90ns 100ns 110ns 120ns 130ns 140ns 150ns 160ns 170ns 180ns 190ns 200ns 210ns

tbmrldfelk LT LTI rirrerefrrererererer

tb-mr1d/11[47:0] 000000000000000000000000000000100000000000000000
tbomrld/ri[47:0] 00
tbomrld/ti[19:0] 00000000000000000000
tbamrld/bi[19:0] 00000000000000000000

tb-mrld/bd-fltinj-en
tbamrld/mr1d/ORbd-f1tloc—x4y2Al
tbamrld/mr1d/ORbd-f1tloc—x4y4A3 I

tbomrld/10[47:0] 00

thmrld/ro[47:0] 000000000000000010000000000000000000000000000000_X____000000000000000010000000000000000010000000000000
tbomrld/to[19:0] 00000000000000000000

tbmrld/bo[19:0] 00000000000000000000

Figure 8.16 Simulation result of the test under rm; for ORbd.

60ns 70ns 80ns 90ns 100ns 110ns 120ns 130ns 140ns 150ns 160ns 170ns 180ns 190ns 200ns 210ns

tbamrldfelk LT LI rorirrerefrre e rerererei

thomr1d/11[47:0] 00
tbomrld/ri[47:0] 00
thomrld/ti[19:0] 00000000000000100000
tbomr1d/bi[19:0] 00000000000000000000

tbomrld/bd_fltinj_en
tbomrld/mrld/ORbd-f1tloc-x4y2Al
tbmrld/mr1d/ORbd_f1tloc_x4y4A3 [

tb-mrld/10[47:0] 00
tb-mrld/ro[47:0] 00
tbamrld/to[19:0] 00000000000000000000

tbamrld/bo[19:0] 00000000000000100000 X 00000000000010100000

Figure 8.17 Simulation result of the test under rm> for ORbd.

8.4 Discussion

8.4.1 Test Effectivity for Interconnect Faults

The proposed test method can detect and locate all single interconnect faults at any

31

AD interconnects. Table 8.3 shows the test effectivity to an MPLD with the size of x xy
MLUTs (having m-pair AD interconnects) array. For each type of fault, the most number
of fault lines that might exist in the MPLD is ('(x+1)y + (x-1)/2)m, and all can be located
by the proposed test method. Locating the stuck-at (sa) fault only requires two-time
reconfigurations (config.) and external test patterns (EP); for the bridge (bd) fault, it only
involves two-time or three-time (depending on the location distribution of the two bridged

interconnects).

Table 8.3 Test effectivity for all single AD interconnect faults.

MPLD size locatable (=total) fault numbers config. (times) EP (times)
MLUT:x Xy s x-1 sa bd sa bd
AD-pair: m ((x » 7) " 2 2o0r3 2 2o0r3

8.4.2 Time Complexity of the Test Procedure

The time complexity of the test is O(Nuis), where Nuu: denotes the
number of MLUTs in the MPLD. The test procedure includes two phases:

1) Configuration phase: Write test cubes into memory to configure the test
route map (routing logic) in memory operation mode.

2) Logic phase: Run the configured logic by applying test patterns to the
external logic input ports in logic operation mode.

Let t.onr denote the time to configure the test cube into an MLUT, and
tiogic denote the time to run the configured logic. N, represents the number
of route maps (for stuck-at fault N, =2, for bridge fault N,.,, = 2 or 3).

For an MPLD with N MLUTS, the total test time is:
Liest = (leutxtconf + thgic) X Nym

Since time t..nr and tigic depend on the memory access speed, which is
common for all MLUTs, the total testing time is determined by the size of
the MLUTs array. Therefore, the time complexity of the test is O(Nuius).

8.4.3 Test Availability for Multiple Interconnect Fault
The proposed test method is available for multiple faults at the AD interconnects.

Definition 8.5 N-faults. N faults, which exist at the different AD interconnects on
the MLUT array, where N> 1.

Testing mechanisms of multiple faults:

82

Let, the range of the multiple AD interconnect faults that occur be N#*, the number
of faults in the range NrX be Nr, and the number of faulty effects observed on the testing
under the route map i is denoted by Nre”, where i = 1, 2, 3, ..., denote the horizontal route

map, vertical route map, diagonal route map, ..., respectively.

For N-faults existing at any site on the MLUT array, the fault range can be
determined by the following equation:

NreNFR = [max(Nre”, Nre®), NreW xNre®] (8.4)

And they can be detected and located by executing i-times tests with 7 route maps
until the following equation holds.

Nr= Nnﬁr}” Fpl) > if max(Nre™™, -~ Nre) == Nﬂ?ﬁ}" 7l (8.5)
Fioe= N2 FPY if max(Nre™, 5 Nee) == N Nop oy (8.6)
i=1

For an instance: to identify 3-faults (stack-at-1) at interconnect A, B, and C on the
MLUT, as shown in Figure 8.18.

FP;;’) FP,? FP,(3; FP2(3’)‘
0 AES= B1 0A B2 B1 0ACES =B 1
g e T ——| g 8 8 g _ ““““ 4_ (0)
P . e ———— «~8—F 0 o — FO 0 <+— ¢ FO
0 E—e GO0 0E —e—|- G0 0 EEH . G1
8 LR RPN | — 8 8 G e 8 g 4_' -::4_ g
1 ==1D 0 1 c{== : D0 1C&E= “fe—D0

"FP, RFP,®

(a) Test under route map 1 (b) Test under route map 2 (c) Test under route map 3
Figure 8.18 Example to identify multiple faults.
By executing the test under two route maps (1: horizontal route map, 2: vertical

route map), we can determine the range Nr® of the number of multiple faults Nr:

NreW =2,

Nre@ =2,

max(Nre”, Nre@) = 2,

NreNR = [max(Nre”, Nre®), NreV xNre?] = [2,4],
FPW = Uﬁfffm FPY = FPY UFPY = {4,B}U{C,D} = {4,B.C,D},
FPD = U pp? = pp? U EPY = {4,C}U{D,B} = {4,B.C.D},
N2, FP? = FPONFPD = {4,B,C,D}.

Since the
(max(NreV,Nr?) =2) # (N N2, = 4);

33

we need to perform the test using route map 3 (diagonal route map):

Nre®) =3,
max(Nre”, Nre™® Npe®) = 3,
3)
FPO = Uy FPY = FPY UFPSY UFP} = {4,GY U{EBYU{EC} =
{4,B,C.E,EG).
N, FPY = FPONFPPNFPY = (4,B,C.D} N{4,B,C,E,FG} ={A4,B,C}.

Then, the
(max(Nre,Nre®, Npe®) = 3) == (N3 pio = 3),

we can determine the number of multiple faults and fault locations:
NF=N,

ne, P =3
Foe= N3, FPY ={4,B,C}.

8.5 Conclusions

In order to improve the yield and guarantee the reliability of the MPLD device, in
manufacturing the MPLD, identifying the AD interconnect faults in the MLUTs array is
beneficial to improving the process. In addition, when the MPLD is put to actual use in
the field, identifying the AD interconnect faults is helpful to avoid configuring the logic
into a faulty MLUT block for high reliability.

In this chapter, we proposed a test method to identify the stuck-at and bridge faults
at the AD interconnect between MLUTs of the MPLD device. The proposed test method
consists of two phases: the configuration phase and the logic phase. The configuration
phase creates the route map in the MLUTs array for fault propagation paths by configuring
the pre-generated internal test data into the SRAMs of the MLUTs. The logic phase
applies the pre-generated external test data to the logic external output ports of the MPLD
to excite the target faults, observe the faulty effects at the external logic output ports of
MPLD (fault detection), and obtain the fault propagation path set through the observed
faulty effects (for fault location). The coordinate of the target interconnect fault can be
determined by performing the two phases under route maps. The main contribution of
this test method is to address not only the fault detection but also the fault diagnosis of
MPLD.

To evaluate the proposed test method, we design an MPLD with a 6x6 MLUTs array
and perform the logic simulation experiments by injecting the stuck-at and bridge fault
node to the netlist of the MPLD. The results confirmed the effectiveness of the proposed

test method which can diagnose the location of the injected stuck-at and bridge fault.

84

The proposed test method can detect and locate all single interconnect faults at any

AD interconnects. In addition, it is available for multiple faults at the AD interconnects.

In our future work, we will explore the test generation of the internal test data and
external data to identify other interconnect faults (such as the open fault, etc.) in the
MPLD device, and explore the methods such as the design for testability and built-in self-
test to the MPLD device.

85

Chapter 9

9. Aging monitoring for MPLD

To improve the reliability of the MPLD device, in Chapter 8, we described the test
approaches for identifying the production defects referred to as stuck-at and bridge faults
at the AD interconnects of the MPLD device. On the other hand, when a good MPLD
device is put actual such as the uses of IoT and Al systems for a long time or works in a
severe environment, various aging phenomena such as HCI (Hot carrier injection), BTI
(Bias Temperature Instability) [50], [51] would cause delay degradation that threatens the
in-field reliability [52] of the MPLD.

This chapter aims to present a method to periodically detect the degradation state of
MLUTs in MPLDs operating in the field by monitoring the delay induced by aging.

The rest of this chapter is organized as follows: Section 9.1 points out the necessity
of delay monitoring techniques for improving the in-field reliability of MPLD. Section
9.2 presents the implementation method of the RO-based delay monitor for the MPLD
device. Section 9.3 performs logic simulation to evaluate the proposed methods. Section

9.4 discuss the proposed methods. Finally, the chapter concludes in Section 9.5.

9.1 Delay-Monitoring technologies

This section points out the necessity of delay monitoring techniques for improving
the in-field reliability of MPLD.

Conventionally, the aging-induced extra delay can be relaxed by manufacturing tests
(burn-in tests or stress tests), redundancy design, or by setting a certain timing margin in
the operating frequency of the device at the design phase [62], [63]. However, it is
difficult to optimize the timing margin for a device due to the variations in the fabrication
process, workload, and operational environment. And there is a pessimistic prediction that
the timing margin usually results in performance sacrifice although it can improve the
reliability of the device [63].

For an MPLD device, it is composed of a large number of MLUT arranged in an
array. During the operation, the progress of the aging at each single MLUT is different.
When configuring a logic circuit into MPLD, the progress of aging at the often-used
MLUTs would be faster which causes more extra delay. The variety of the aging-induced

delay at MLUTs would affect the performance of the constructed logic circuit.

86

Commonly, a certain timing margin is pre-designed in the operating frequency of
the MPLD device could cover the aging-induced delay of the MLUTs during most
lifetimes. However, as the aging progresses, the delay at the MLUTs with faster aging
progression would exceed the timing margin earlier which could cause a sudden system
failure. On the other hand, it is getting difficult to design the timing margin for a device

due to the variations in the fabrication process, workload, and operational environment.

Delay-monitoring techniques [62], [64] are one of the effective ways to ensure the
in-filed reliability of the device, they can measure the delay variation of the circuit
affected by the process, voltage, temperature (PVT) in real-time by implementing some
special timing-measurement circuits such as the RO (Ring oscillator) [65], TDC (time-
to-digital converter) [66] into the target device. Figure 9.1 shows the concept of delay
monitoring. The delay of the device is measured periodically during the in-filed operation.
When the delay value is getting exceed the timing margin (or a safe delay boundary), an
early warning/report can be issued to the upper system to avoid a system failure or call

for maintenance like repair/diagnosis.

A

Allowable delay boundary Failure _..-
a;

C

i
ws®

__Warning/Repair
‘& [Failure avoidance

Circuit delay

Delay monitoring
(Aging detection)

System operating time
Figure 9.1 Concept of delay monitoring techniques.
Therefore, it is necessary to the delay monitoring techniques for improving the in-
field reliability of MPLD.

9.2 Delay Monitoring in MPLD

This section presents the implementation method of the RO-based delay monitor for

the MPLD device.

RO is commonly used as a sensor to monitor the delay variation of a circuit affected

87

by temperature, voltage, process, or aging on the circuit. To measure the delay of a circuit,
it is effective to implement a RO in the device. In [67][68], the authors proposed an on-
chip digital delay sensor using ROs to monitor the aging-induced delay of application-
specific integrated circuit (ASIC) devices. Additionally, in [69], the authors integrated the
on-chip digital delay sensor into the field-programmable gate array (FPGA) with the goal
of enhancing the reliability of logic reconfigurable devices. As a result, we incorporate

ROs into MPLDs for delay monitoring purposes.
9.2.1 Ring Oscillator (RO)

Figure 9.2 shows a general RO structure, a ring circuit composed of a 2-input NAND
gate in series with an even number of inverters. One of the inputs of NAND is the
oscillation control signal EN. While setting EN to 0, the RO is initial to a stable state;
when setting EN to 1, the RO operates in the oscillation mode and generates an oscillation
signal at a specific frequency. The delay (transmission time) Dro of RO’s entire ring
routing path is half of the oscillation period 7zo of RO; we can calculate it through the

oscillation number NZ0 within a certain oscillation operation time tzo:

_Tro tro
Dpo = - - 2N2§‘3 9.1)

Ring ro_uting path Transmission time (Dgo)

I—: [[[[Oscillation signal

Figure 9.2 Ring oscillator.
9.2.2 Delay Monitor Design Using RO

In MPLD, we can deploy RO into specified measurement areas (partial MLUTs or
all MLUTs) to measure the average delay (local delay or global delay) of MLUTs within

the area.
Deploy RO in MLUTs:

We first specify the measurement area (MLUTs to be measured for the delay), then

design the RO structure according to the following deployment rules:
Rule 9.1 RO elements. A NAND gate and an even number of inverters must route
in series in a ring.

Rule 9.2 Deployment area. All elements must lie within the measurement area, and

the ring routing path must pass through each MLUT within rather than outside the area.

88

Rule 9.1 is required to satisfy that the circuit can oscillate. Rule 9.2 is required to

ensure the delay measured is exactly the delay of the measurement area.

Figure 9.3(a) shows an example of deploying a RO circuit into MLUTs. RO
elements are placed in the MLUTs to be measured and routed in series in a ring through
AD interconnects of the MLUTs. We can calculate the average delay Dayzurof the MLUTSs
through the transmission time Dro of the ring routing path and the number Nap of AD
interconnects passed by the ring routing path:

_ Dgro Iro
Dyrur = v

o 2NFON,,
EN
— <>O >07_> amnm —_—

O<]»<— e
MLUT MLUT

MLUT MLUT MLUT
Point2 Point1 J

(9.2)

A

A

AY

A

tro,

Dyyr) |_EN

|:> _—LJ_DR" //J_...—L__:"J_Poinﬂsignal
—j —l—J_//—l_J_ —lfointZSignal

Edge detection puls ? Pulses

\ 4
\ 4
S

Half-Adde

Ain b in > ‘ Ain
00| .S 0,4 ean OM-1l4S
C, C,

Figure 9.3 Delay monitor; (a) RO in MLUTs, (b) counter for RO.
Deploy Counter for RO:

%)

s

Here we describe the design of the counter to calculate the oscillation number (N/29).
Versus the conventional counter design composed of synchronous Flip-Flops, in this study,
we proposed a new counter circuit design that is even more adapted and simpler to
implement in the MPLD, as shown in Figure 9.3(b). The proposed counter consists of M
half-adders connecting in series. When setting the RO oscillation mode, pulses can be
outputted by a signal edge detection gate (here, we used NOR gate) by comparing the
signals of two neighbor AD interconnects on the ring routing path. The N9, i.e., the
number of pulses, can be calculated by the counter by performing an addition carry

operation for the pulses:

39

Ngesg = (Oppg 0100)2 93)

The procedure of implementing RO and counter for measuring the delay of MLUTs

is as follows.

Implementation Procedure
Step 1: Select measurement area (MLUTS);
Step 2: Deploy RO and counter;
Step 3: Create the truth tables for each MLUT in the area;
Step 4. Write the truth tables into corresponding MLUTSs;
Step 5: Set the MPLD to logic operation mode;
Step 6. Set oscillation operation time (EN=1);

Step 7: Observe the oscillation number (counter outputs).

9.3 Simulation Results

To evaluate the proposed delay monitor method, as shown in Figure 9.4, we
configured a RO with 11 elements (a NAND and 10 inverters) and a counter with 8 half-
adders into the measurement area (MLUTSs: xoyo, x1y0, X2v0, X3v0, x4y0) of the designed
MPLD with 6x6 MLUTs array. We performed a logic simulation experiment using
ModelSim.

A1z

X1Yo X2Yo X3Yo X4Yo X5Yo0

a D341, DO D, Ay DO D114y DO D, Ay DO D141

A11Dq Ay Dy A11Dq A; D A1qDqy

o] o] o o]
D19A19 Ds As D1oA19 D5 A D1pA1g
[40;,, A1, A2;,

Xo0Yo A1oDq v As Dg A1oD1d [SO (ﬂ A; D %14|—<§(V\ A10D; gﬁ’(@
c1, c 2, c

- Y L S A E o | A e [A

A, Dy Ag Dy Ay Dy As Dy Ay Dy

A7) A6, A5y aa; A3
?D*Eg Dg A§l ?)D*D‘é D; A, ;)DT—SDS Dg Ag) ?)D*Ls‘é D; Ay ?)D*DD:«] Dg Agf

by Y Y 4 P Y Y

Figure 9.4 RO and counter in MLUTS to be measured for the delay.

1: We routed the RO pass through 10 AD interconnects in the measurement area
(Nap=10).

2: We set the delay of the ATD circuit for each MLUT to 5.5ns and the overall
oscillation operation time of the RO to 2000ns (tro).

The waveform of the RO oscillation and the counter is shown in Figure 9.5. When
setting the oscillation control signal to 1, the RO begins oscillating while the counter

counts the detected pulse until the oscillation control signal becomes 0. The pulse number

90

(RO oscillation number) counted by the counter is 18:

105ns 205ns 305ns 405ns S05ns 605ns 705ns 805ns 90Sns 100Sns 1105ns 1205ns 1305ns 1405ns 1505ns 1605ns 1705ns 1805ns 1905ns 2005ns 2105ns 2205ns 2305ns 2405ns

thmrld/mrld/x0y0A12 [| I
tbanrld/mrld/xlyoas — o o or oo or s reJsererrersrererer e reru
tbarld/mrld/xlyoAl0 — [L o/ oLr oy o g s J- ey reren
tbamrld/mr1d/x3y0A9
tb-mrld/mr1d/x0y0D8
tbanrld/mrld/x1y0D7
tbamrld/mr1d/x2y0D8
tb-mrld/mr1d/x3y0D7
tbamrld/mrld/x4y0D8
tbomrld/mr1d/xSy0D10
tb-mrld/mr1d/x4y0DS
thmrld/mrld/x3y0D10

OO0 KOO0

Figure 9.5 Simulation waveform to measure delay for MLUT.
N0 =(00010010)2= 18
Thus, the average delay of MLUTs in the area can be calculated by equation 9.2:

tRO _ 2000ns
INON, - 2x18%10

DMLUT= =15.5ns

Comparing the set delay (5.5ns) of the ATD circuit with the Duzur (5. 5ns), the result

confirms the effectiveness of the proposed delay monitor method.

9.4 Discussion

9.4.1 Overhead of Inserting Delay Monitor

It is worth noting that the proposed delay monitor is configured in the measured
MLUTs as the truth tables without incurring logical gates and routing costs. The only
additional overhead is the time cost of configuring the truth tables of the delay monitor
into the MLUTs.

9.4.2 Work Scope of Delay Monitor

The ATD circuit, which detects address changes in the asynchronous SRAM to drive
the logic operation, is the most sensitive component to the aging-induced delays in the
MPLD. The proposed delay monitor aims to detect delays occurring in the ATD logic for
each MLUT. As for the SRAM read/write delay, existing memory delay testing methods
can be employed to detect it during the memory operation mode of the MPLD, which is
beyond the scope of this work.

9.4.3 Locating Abnormal MLUTs

The proposed delay monitor aims to periodically detect the degradation state of
MLUTs in MPLDs operating in the field. To detect degraded MLUTs in an MPLD with
an MxN array of MLUTS, as shown in Figure 9.6, the total number and location of delay

monitors are determined according to the detection method described below.

91

An array of MXN MLUTs Delay Monitors in Rows (rDM)

o o (P s

Delay Monitors in Columns (cDM)
cDM, cDM, cDM; cDM,--cDM,,_, Find degraded MLUTs
L 4 L 4 £3

{)Q' ﬁ

o0
25195
/9018
N
Fhie e
eleie!e o ©
dc?cZ dt?Zc3 dgcl dc:c5mdcz-1cN

Figure 9.6 Delay-monitors deploying method.

VAN YArard

OANNNE
55

(1) row detection: M delay monitors are configured in M rows (71, ..., rm) to detect

the average delay of MLUTs in each row (d;, ..., drm).

(2) column detection: N-1 delay monitors are configured in N columns (cy, ..., cn),
where two adjacent columns are required to configure a delay monitor. This detects the

average delay of MLUTSs in two adjacent columns (der.c2, ..., deN-1,eN).

(3) locating degraded MLUTs: MLUTs in the intersection region of rows with delays
in M rows and columns with delays in N rows. For example, the MLUT at row 3 and

column 3, is determined by d;3, dc2.c3, and de3,c4.

In this setup, row detection and column detection are configured simultaneously and

work in parallel.

For achieving a certain or higher level of in-field reliability, we have examined this
issue during our research, such as how to detect the details of the delay for each degraded
MLUT. It is a challenging task that may require more complex models to build a finely
designed monitor. This will be the subject of our future research. Nevertheless, locating

abnormal MLUTs with large delays still represents a significant contribution to logic

92

designers as a reference.

9.5 Conclusions

In this chapter, to detect and report the aging state of MPLD devices during field
operation, we have proposed an approach that uses a ring oscillator circuit for monitoring
the aging by periodically measuring the delay of MLUTs in the field during MPLD’s

operation.

To configure the ring oscillator circuit into MPLD, we have proposed the design and
implementation method of a ring oscillator circuit suitable for the structure of the MPLD

device and designed a counter to store the RO oscillation frequency.

The proposed method can measure the Global Delay (of all MLUTs) and the Local
Delay (of specified MLUTs) in the MPLD device.

To evaluate the proposed methods, we designed an MPLD with a 6x6 MLUTs array
and performed logic simulations by injecting delay into MPLD. From the results of the
logic simulation performed as an evaluation experiment, we confirmed that the proposed

method can effectively measure the delay of the MLUT with a very small error.

In our future work, we will make a quantitative analysis of the aging phenomena,
develop a precise simulation method as well as an on-chip test method, and explore the
methods to determine the total number and locations of delay monitors for achieving a

certain or higher level of in-field reliability.

Part IV: Application of MPLD

93

94

Chapter 10

10. A Solution to Implement Neural Networks in MPLD

With the rapid spread of artificial intelligence (Al) applications, the neural networks
(NNs) algorithm has achieved significant successes at the machine learning domains
including computer vision [70], speech recognition [71], and robotics [72]. In a practical
intelligence application, NNs usually consist of millions of parameters involving
multiply-accumulation operations, which requires high-performance computing
equipment. In addition, with the rapid spread of IoT (/nternet of Things) technology in
both the industrial and consumer fields, NNs are widely applied into various edge
terminals, e.g.: battery-powered mobile devices, robots, electric vehicle etc.. In such
systems, real-time processing, low power consumption and low cost are the main
concerns with the computing device used for NNs [73]. In order to achieve high
performance and energy efficiency for Al application, hardware design for NN is gaining

great attentions [74].

Over the past few years, the strategy of hardware design for NNs application can
mainly be classified into three types: 1) Use GPUs (Graphics Processing Units) to
accelerate NN training. 2) ASICs (Application Specific Integrated Circuits) design for
NNs. 3) FPGA-based accelerators of NNs. The GPUs apply single-instruction-multiple-
data in parallel processing that can significantly speed up the training process of
complicate NNs [75][76][77][78], however, usually accomplished with huge energy cost
(e.g.: NVIDIA A100 Tensor Core GPU, the thermal design power (TDP) is 400W [79])
that is not suitable for edge device. The ASIC design for NNs is another key strategy for
achieving high performance and energy efficiency for NNs application, such as Google
edge TPU (tensor processing unit), NVIDIA Xavier, and NovuTensor achieved good
energy efficiency [80]. However, the extremely high development cost might obstruct the
application of ASICs for [oT system. Compared to ASIC design, reconfigurable devices
such as FPGAs allow the user to reprogram the functionality and routing in field that can
provide a flexible and scalable platform for implementing the NNs application with high-
performance and low power consuming [81], however, the large area, delay and power
issues due to the programmable interconnect resources prevent the use of FPGAs, and high

cost is not friendly to the end user of edge devices.

In MPLD, functions (arithmetic logic, wiring logic) are expressed in the form of truth

tables pre-stored in the SRAMs of MLUT. Since large amount of interconnect resources

95

like in FPGA are not needed anymore, a large number of SRAMs can be integrated that
provides a chance to implement large and complex functions in a single MPLD by truth
tables, such like a LUT-based neuron activation function [82] and the LUT-based Neural
Networks (L-NNs) instead of implementing an accelerator in FPGA (due to the limited
memory size of LUT). Since the LUT-based neuron model [82] only operates memory, it
thus would work much faster and low power than a traditional accelerator which has to
perform the multiply-accumulation operations every cycle even though with acceleration
circuits. Therefore, we believe that MPLD would be a promising alternative edge Al

device for NNs application.

On the other hands, due to the special structure of MPLD, implementing a neural
network with fully-connected structure is an impossible task. There is an issue to
implement an NN application in MPLD, it needs a newly designed NN structure to adapt
to the MPLD special structure.

In this chapter, we suggest a LUT-based neuron model to realize neuron functions
in truth table and propose a novel neural network structure named MNN (MPLD-based
Neural Network) to adapt the special connection structure of MLUTs for implementing a
neural network into MPLD. To confirm the LUT-based neuron model, we design a logic
simulation experiment in an MPLD with 6x6 MLUTs array. The simulation results
confirm the feasibility of LUT-based neuron function expression are the same as the
results of the theoretical analysis. To evaluate the effectiveness of MNN, we also perform
an experiment by training MNN with the MNIST dataset. The experimental results show
that the MNN can get almost the same accuracy and loss for MNIST data recognition
compared to a fully-connected neural network (FNN).

The main contributions of this study are as follows.
1) A LUT-based neuron model is introduced.
2) A novel network structure named MNN is proposed.

The chapter is organized as follows. Section 10.1 suggests a LUT-based neuron
model. Section 10.2 proposes an MNN (MPLD-based Neural Network) for implementing
the NNs application into an MPLD device and describes the characteristics and wiring
connection way of the proposed MNN in MPLD device. Section 10.3 performs two
experiments for confirming the LUT-based neuron model and evaluating the effectiveness

of the proposed MNN, respectively. Section 10.4 concludes the chapter.

96

10.1 LUT-based neuron model

In this section, we suggest a LUT-based neuron model to realize neuron functions
in truth tables in MPLD.

According to the operating principle of MPLD, any functions (including wiring
logic) can be written into the MLUT in the form of a truth table that provides a new
computing model for neuron activation functions in MPLD. In addition, a large number of
MLUTs make it possible to implement a complete LUT-based NN into a single MPLD

device.

Figure 10.1 shows a basic neuron of neural network (NN). The neuron function is
expressed in formula: u = YV ,w;xx;+b, y = f{u), where f'is an activate function for u. To
compute the value of y for u, a traditional approach has to perform multiply-accumulate
operation and activate operation in many cycles and requires large memory (buffer) to

store the weights and input/output vectors.

Inputs 1
Xo~Wo b
Output
Wy
*1 fo——y
Wy
XN

Figure 10.1 A NN neuron.

Yo
——

Inputs MLUT (Memory) Outputs
X0

7
_ %o || | Yo ,
X1 f(Z Wi X x; + b,-) V1
. i=0 :

——j=0123 —

Y1
——
Y2
L J)
Y3
Inputs MLUT (Memory) Outputs
 —
—

X0 00000000 - - - -
|
X1 00000001 - - - -
*1 .

Yo

Y1

—» —

11111111 ~ - -« -
(a) Neurons in a single MLUT (b) Neurons in truth table form in a single MLUT

Figure 10.2 LUT-based neuron model in a single MLUT.

The main idea of this study is that a neuron function can be expressed in a truth table

in MPLD. Figure 10.2 (a) shows an example to implement four neurons function in one
MLUT. The correspondence between inputs x and outputs y of the neurons can be
computed by pre-learning and formed in a truth table in the MLUT between the address-
inputs and the data-outputs. Therefore, as shown in Figure 10.2 (b), when calculate the

output y for a given input pattern x, it only needs to access the memory and readout the

97

prestored results of y. It is thus much faster and low power than a traditional accelerator
which has to perform the multiply-accumulation operations every cycle even though with

acceleration circuits.

Note that here we are discussing the binarization forms of x and y. For specific
binarization methods of x and y, existing binarization methods are utilizable [83]; we will

also conduct future research to explore other binarization methods valid for MNN.

10.2 MPLD-based Neural Network (MNN)

In this section, we explain and propose an MNN (MPLD-based Neural Network) for
the aim of implementing a neural network into an MPLD device. we also describe the
characteristics of the MNN and introduce the implementation way of the MNN neurons in
MPLD.

10.2.1 A sparse neural network: MNN

A fully connected neural network (FNN) cannot be constructed directly into the
MPLD. As shown in Figure 10.3, all neurons of each layer are fully connected with the
preceding layer. For the MPLD structure, as shown in Figure 10.4, each MLUT (e.g.,
MLUTS) can only connect up to four adjacent MLUTs (e.g., MLUT1, MLUT2, MLUT®6,
MLUT?7), and the data outputs of other MLUTs (e.g., MLUT3, MLUT4) cannot be
connected to the MLUT (MLUTS). Therefore, it is impossible to construct a fully
connected NN into the MPLD due to such connection limits between MLUTs.

ADO ADT5 <+—>A00 ADT5 >
<+——AD1 AD14/+—> +—>AD1 AD14—>
<«——>AD2 AD13+—> <+—>AD2 AD13¢—>
———»AD3 i AD12 b «——ap3MLUT6 oD 15}¢—>
<«—>AD4 AD11 ADTT AD AD4 AD11[>
<+~—>AD5 AD10 AD10 AD! AD5 AD10
<«——»AD6 AD9 AD9 AD AD6 AD9 >
<+—{AD7 AD8 AD8 MLUT5AD7 AD7 AD8 [+—>
<+——>AD0 AD1 AD15 AD 'ADD AD15]
<+—AD1 AD14 AD14 AD1 AD1 AD14¢—>
<+——>AD2 AD13 13 AD; /AD2 AD1
<+—>AD3 AD12 /AD3 AD12/+—>
+——{ana""UT2aD1 1le—F ADY| D47 Ap 1
<+——>AD5 AD1 AD10 ADS5| /AD5 AD1
<+—AD6 AD9 /AD9 AD6/ AD6 AD9 [+—>
<«~—{AD7 AD8 /AD8 AD7 AD7 AD8 [+—>
— AD15 ADO AD0O AD15)
«—AD1 AD14 AD14 AD1 AD1 AD1
<+«—>AD2 AD13 1 AD13 AD2| AD2 AD13¢—>
<«—AD3, |15 AD1 AD12 AD3| AD3 AD12le—>
<«~—AD4 AD1 ADTT AD4| AD4 AD1
<«—AD5 AD1 /AD10 ADS5| AD5 AD1
<«~—AD6 AD9 /AD9 AD6| AD6 AD9 [¢——>
<—-$1 AD3/! /AD8 AD7 AD7 AD8 |+—>
— AD15 ADO| /ADO AD15+—>
<+~— D1 AD14 AD14 AD1 AD1 AD1
+—AD2 AD13 AD13 AD; AD2 AD13+—>
<«—AD3; ;1,4 AD1 AD12 AD: AD3 AD12+—>
<+—AD4 AD1{j+—> <«—>|AD4 AD11[—>
<+—AD5 AD1gj+—> <«~—>{AD5 AD10+——>
<+—AD6 AD9 |¢&—> <+——> AD6 AD9 [¢——>
<+~———AD7 ADg/|+——> <+~—>AD7 AD8 |[+—>

Figure 10.3 A fully connected NN. Figure 10.4 Connection limit in MPLD.
To implement a NN into MPLD, we propose a sparse neural network based on the
MPLD structure named MNN (MPLD-based Neural Network) in this study. As shown in
Figure 10.5, according to the structure of MPLD, we suggest sparsely connecting the

neural network in units of MLUTs in MPLD. We call such a sparse neural network based

98

on the structure of MPLD an MNN (MPLD-based Neural Network), and its network

structure is shown in Figure 10.6. The proposed MNN has inward gradual convergence

and association characteristics to adapt the connection structure of MLUTs. In the input
layer, the data input of each MLUT is independent of another MLUT, and the feature of

these data will be converged and associated in the middle layer.

«———{AD0 ADTS] «—>
AD1 AD14

«—{AD2 AD13fe—>
«—{AD3 AD12|e—
«—{AD4 AD11 f—
«—AD5 AD10) (AD10 ADS[—>
«—|AD6 AD9 AD9 ADG|+—>
— AD8 AD7[e—>
— [AD15 ADO| {ADO ADTY
«——{AD1 AD14) AD14 AD1 [AD1 AD14f+—>
«—lAD2 AD1 AD13 AD2 [AD2 AD13f+—>
«—]AD3 AD1 AD3 AD12+—>
«—>| AD4 AD11 |AD4. AD1 T ADR >
«—AD5 AD10) (AD10 AD5 [AD5 AD1 10 ADS|
+~—AD6 ADY) AD9 ADS| [AD6 ADY 9 AD6[+—>
— AD8 AD7[+—>MDZ___ADSI*——>|AD8 AD7[+—>
— [AD15 ADO| 15 ADO[*
+~—{AD1 AD14) AD14 AD1 [AD1 AD1 14 AD1[+—>
«—lAD2 ADI13 AD13 AD2 [AD2 AD1 13 AD2J—>
«—>AD3 AD12|+— AD3 AD12] —
<+—| AD4 AD11|+— [AD4 AD11f+—>
<+— AD5 AD10 (AD10 ADS5| AD5 AD10j >
<+—| AD6 AD9 AD9 ADS| [AD6 ADg+——>
-~ AD8 AD7|
— AD15 ADo[—
<+ AD1 AD14] AD14 AD1[&—
<+ AD2 AD13 AD13 AD2J—
+—>AD3 AD12) —
+—aD4 AD11|+—>
+—aD5 AD1o|+—>
<+ AD6 AD9 | +—>
<«—\D7 ADY|—>

Figure 10.5 Sparse connection in unit of

MLUT in MPLD.

2

Wk

/
!

77 Vi
l
i

il

nininin

S

QOO
{ninn
\\\\\

)

s
)

NI
W
N
\

=

based Neural Network)

Figure 10.7 shows an example of using MNN for a very simple image recognition

application. Where, a 4x4 bit image of O and Z is given respectively, and the vector of

each row (4bit) is applied to the address input of an MULT at the first column of the

MLUT array, respectively. Throughout the hidden layers, the feature of each row vector

will be converged inwardly and gradually, and associated until the output layer, where all

features will be extracted and recognized.

Input layer
MLUTSs (1st column)

N

Hidden layers

|

.I./
W
NN
\\y\

&

4 X4 image

v1, v2, v3, v4 are mutually independent

09

Output layer
ILUT (4th column)

=>Zor 0?

N
s
H
@
8
§~.

D : MLUT block

Figure 10.7 Feature extraction in MNN.

10.2.2 Implementing MNN into MPLD

Figure 10.8 shows the wiring method to connect the neurons between adjacent layers
in an MLUT array where each MLUT has 16 bits AD lines. The output of each neuron

99

function configured in an MLUT will be read out and propagated to the following adjacent
MLUT through only one AD (address-data) line. Then, the value of the address input from
the preceding MLUT will be connected to the inputs of all neurons by configuring the
branch logic (or wiring logic), e.g.: ADII in MLUT x0y0 of Figure 10.8. Each neuron
configured in an MLUT can connect to at most 8 neurons which are configured in the
preceding adjacent MLUTs.

[Top IO port: ti[19:0], to[19:0] |

x0 ‘[x2y0] ‘[x4y0]
ADQ AD15 [ADO AD15 /ADO AD15]
A 14 lAD1 AD14 AD1 AD1
2 L——— [AD2 AD13 AD2 AD13 x5
AD3 laD3 AD12 D3 AD12 y
/AD4 AD4 /AD4 AD11 ADTT AD4 |AD4 AD11 ADTT ADdle—>
AD5 AD5 AD1 AD10 AD5 AD5 AD1 AD10 AD5fe—
AD6 AD6 AD9 AD9 AD6 AD6 ADY| AD9 AD6le—|
AD7 AD7 ADS! AD8 AD7 AD7 AD8 AD8 AD7/e—>
ADO AD15 AD15 ADO [ADO AD15| AD15 ADO|
AD1 4 AD14 AD1 lAD1 AD14] AD14 AD1fe—>
AD2 Al AD13 AD2 |AD2 AD13| AD13 AD2 | €——p
AD3 {AD12 AD3 |AD3 AD12) AD12 AD3le—>
AD4 Al 4 lAD4 AD11 AD11 AD4+—>|
AD5 IAD5 AD10| AD10 AD5[¢——>
AD6 &~<—>/AD6 AD9 AD9 AD6+—>
AD7 D7 AD AD8 AD7[¢—>
/ADO D15 AD15 ADQ[<—>|
—[+—*AD1 AD14 AD1[+—>|
e AD2 AD13 AD2[¢+——>
~ AD3 12 AD3[¢—> T
= 4 A 4 5
o AD5 > &
e AD o—> 'S
3 AD7 7e—>l =
N | AD0 o[> S-
X [e— D1 'AD D1j«— =
= [«—AD2 2> &
£ [«—1AD3 A T
S |[«—AD4 D11 ADg—> =
O |«——¥AD5 Al AD10 AD5[*—> £
O |+—AD6 g AD9 AD6+—>| O
= |[«—AD7 ADS! AD8 AD7 2
S ADO fADO AD15 AD15 ADO[*> O
- AD1 Al lAD1 AD14] AD14 N amd™
AD2 lAD2 AD13] AD13 AD2) =
/AD3 Al IAD3 AD12 AD12 AD3 A
AD4 ADT1 AD4 lAD4 AD11 AD11 AD4] o
/AD5 A AD10 AD5 IAD5 AD10) AD10 AD5[>
/AD6 9 AD9 AD6 lAD6 ADY| AD9 AD6
AD7 Al AD8[*>AD8 AD7 lAD7 ADS| AD8 AD7[*—>
ADO #7 >AD0 AD15 AD15 ADO JADO AD15] AD15 ADO[|
AD1 Al IAD1 AD14 AD14 AD1 JAD1 AD14 AD14 AD1[+—>
AD2 IAD2 AD13 AD13 AD2 IAD2 AD13 AD13 AD2
AD3 AD3 lAD3 AD12 AD12 AD3 lAD3 AD12 AD12 AD3
AD4 ADT1 AD4 /AD4 AD11 ADT1 AD4 lAD4 AD11 ADT1 AD4|
AD5 AD10 AD5 lAD5 AD10 AD10 AD5 lAD5 AD10 AD10 AD5[|
/AD6 9 AD9 AD6 AD6 AD9 AD9 AD6 lAD6 AD9 AD9 AD6[|
AD7 AD8 /AD8 AD7 AD7 ADS AD8 AD7 lAD7 ADS| AD8 AD7[|
x0v5 AD15 ADO AD15 ADO AD15 ADO
y AD14 AD1 AD14 AD1 AD14 AD1
AD13 AD2 AD13 AD2 AD13 AD2 |
L] AD12 AD3 AD12 AD3 AD12 AD3 "
x1y5 x3y5 l_. x5y5
l Bottom 10 port: bi[19:0], bo[19:0]]
x0y0 x0y0]
! «—/AD D1 <—1 ; logic branches
<+ AD1
<+—>AD2
<+«—»AD3
<+——>(AD4
<«—>» AD5 AP1
<«——>/AD6 — AM
<+«——— AD7 | Ap8
<«——>/AD0 > AD1
<+—>(AD1 Gl A
——p AD P Al . .
<«—>AD. — aBs— Combination
<«—AD > »
< AD P
<+—>{AD| |
P AD —p
| A D —p
<+—>AD4 <+—>AD4 AD11
<+—>AD5 0 <+—> AD5 AD10
i g ADG <«—» AD6 AD9 AD9
", +——>/AD7 ADS «— a7 [oe ADS

Figure 10.8 MNN wiring connection way in MPLD.

100

10.3 Experimental Results

In this section, we describe the performed the experiments. First, we design an

experiment to confirm the LUT-based neuron model as described in section 10.1. Then,

we also show the experimental results to confirm the effectiveness of the proposed MNN
in the section 10.2 by the training using the MNIST dataset.

10.3.1 Confirm LUT-based Neuron Model

As shown in Figure 10.9, here a size of 4x4x4 NN is given, and each layer (Hidden-
layerl, Hidden-layer2, Output-layerl) is constructed to MLUT x0y1, MLUT x1y0, MLUT

x2y1, respectively. For simplicity in this experiment, for this NN we using the Heaviside

Step (Binary step) as an activation function to calculate each neuron:

Fw) = {1 au=1
0 au<li
N
u= E w; X x;+b
i=0
Hidden-layer1 Hidden-layer2 Output-layer
MLUIT x1y0
: MLUIT x2y1
Inputs MLUIT x0y1 " .
2
X9 Yo D yE)] _>y0
\ [1] A0 [2] A [3]
xq Y1 n Y1 Y1
— —_—
— A1 D Aldle——
x yll] y[2] y[3]
—22_ A 2 p2—=2 9 D13 2
— 1 A2 A13|e——ro
x yiH 2] e
3 3 D3 Y3 _>3
— D12 A3 D3 A12le——
s A4 D1 ——
— : 2 D4 AMl—ono
*s L / Zwﬁ xxith A5 [~ D10——
= £ D Wi x4+
— D5 \& A10}——
x Y, j=0123
/ A8 j=0,123 P9
/ D6 j=012, A9
X
— A7 D8 —
—Jp7 J=O0L23 g D7 A8 ——

Figure 10.9 A size of 4x4x4 NN constructed in 3 MLUTs.

As shown in Figure 10.10, we give the value of the weights for each layer and assign

the value of b to 0. Each layer of given weights NN is calculated to a truth table stored in

an MLUT to realize the neuron functions. Where, such as there are inputs 01010000,
through the MLUT x0y1, MLUT x1y0, MLUT x2y1, theoretically the outputs of Hidden-

layerl,

Hidden-layer2, Output-layer is 0011, 1011, 0111, respectively.

101

Hidden-layer1 Hidden-layer2 Output-layer

Inputs MLUIT x0y1 Outputs1 MLUIT x1y0 OutputsZ MLUIT x2y1 Outputs3
o/ INE) S

o, d y?] g z y?] 31"
1 2
x.1 o f Zw][.,li]xx,-+bj 3’[11]; Z ;[21 X x; + b; y[12] xxl+b %,
— - fir” =0 / ny] - T
X7] j=0,123 s, j=0123 Y3 =o ,2,3 Y3,
[1] i=0 1 2 3 4 5 6 7 [2] i=0 1 2 3 [2] i=0 1 2 3

Wo,i Wo,i Wo,i

[1] [2] [2]

1i Wii Wii

[1] [2] (2]

Wai Wai Wai

[1] [2] [2]

W3 i W3 i W3

Hidden-layer1 Hidden-layer2 Output-layer

Inputs MLUIT x0y1 Outputs1 MLUIT x1y0 Outputs2 MLUIT x2y1 Outputs3
%o /0000000 e *\ y{,l] f 0000 + * * -+ \ yE)Z] K 0000 + * * -+ \ yE)?’]

* 00000001 - - - - (1 0001 « « + - 21" 0001 + - =+« « W
e B : 24 : : }'[12] g : : Ve
— 1 01010000 o o 1 1 y%l] 0011 1 o 1 1 yfz] 1011 0 1 1 1 J%:’T,
4xL’ E : y3 > y3 » : : y3

\a1111111 - - - -) e _ 1111 -
Figure 10.10 LUT-based neuron model for the size of 4x4x4 NN.

Figure 10.11 shows an performed logic simulation experiment in an MPLD with 16-
bits 6x6 MLUTs array. the experimental result shows that the operating results of the

LUT-based neuron model in MPLD are the same as the results of the above theoretical

analysis.
X Signals Waves
0 Time
X1 lad xOy1[0]=0
& xZ lad x0y1[1]=1
a X3 lad_x0yl[2] =0
S Xy lad x0y1[3]=1
xS lad x0yl[4]=0
X6 lad_x0y1([5] =0
x lad_z0yl[6] =0
7 lad x0y1[7] =0
— (1] Tdata_x0y1[15]1 =0
5} Yo ldata_x0yl([14] =0
> [1] <
< yl ldata xOyl[13]=1
= [1] ldata x0y1[12] =1
=5 Y2 lad_x1y0[15] =0
E y[l] lad x1y0[14] =0
3 lad_x1y0[13] =1
L l2] lad_x1y0[12] =1
E Yo Idata x1y0[0] =1
< y[Z] ldata x1y0[1] =0
A SR - .
= [Z] ldata x1y0[2] =1
< V2 ldata_x1y0[3] =1
-E y[Z] lad x2yl(0]=1
3 5 -
lad x2y1[1]=0
[3] lad_x2yl([2] =1
8 Yo lad x2yl[3]=1
MK =
'IE Vi lda:e._xfyl[.lS] =0
= 3] ldata_x2yl[14] =1
f=? Y, ¢ ldata x2yl[13] =1
= [3] ldata x2yl[12]=1
O V3 =

Figure 10.11 Experimental results for the LUT-based neuron model.

102

10.3.2 Confirm Proposed MNN

In this experiment, for comparing with FNN, we first designed the same size of FNN
and the MNN. we used the MNIST dataset (60,000 handwritten number training images
and 10,000 test images.) to make training the MNN and the FNN, respectively. Figure
10.12 shows the training results in 50 epochs, the results show that the MNN is an
effective neural network that can get well accuracy and loss as same as the FNN. Figure
10.13 shows the MNN has been 150 epochs trained, and it can obtain the training accuracy
and testing accuracy up to 0.99 and 0.96, respectively.

1.0

1 —o— MNN training set loss R
SO ITIET
—>— FNN training set loss //'w
2.0 0.9
0.8 f
1.5 0.7
(@)
%)) ©
8 506 (
=110 9
<< o5
0.4
0.5
0.3 oy
S —o— MNN training set accuracy
- PRH2055800000 FNN training set accuracy
0.0 0.2
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch
Figure 10.12 MNN and FNN training result in 50 epochs.
T —o— MNN training set loss 1.0
—>— MNN test set loss
2.0 0.9
0.8
1.5
0.7
[9)] ©
0 | 5
o 0.6
- O
1.0 o
<
0.5
0.5 0.4
y
» agud| 0.3 —o— MNN training set accuracy
0.0 J. —>— MNN test set accuracy
0 25 50 75 100 125 150 0 25 50 75 100 125 150
Epoch Epoch

Figure 10.13 MNN training result in 150 epochs.

103

10.4 Conclusions

In this chapter, we suggest a LUT-based neuron model to implement a NNs into
MPLD device. The NN neuron’s operation can be calculated into truth table form pre-
stored in MLUT of MPLD. In MPLD, due to the special interconnection structure of
MLUTs, it is difficult to construct a NN with fully connection into the MPLD. Therefore,
we proposed a novel network structure MNN (MPLD-based Neural Network) to adapt
the MPLD structure. To confirm the LUT-based neuron model, we design a logic
simulation experiment by implementing a 4x4x4 LUT-based neural network. We confirm
that the simulation results are the same as the results of the theoretical analysis. To
evaluate the effectiveness of the MNN, we also performed a recognition training
experiment using the MNIST dataset. The experimental results show the MNN is an
effective neural network which can get well accuracy and loss for MNIST data

recognition.

In our future work, we will explore binarization methods for MNNs and analyze

design approaches for MNNSs that can recognize images and data of any size in MPLD.

104

Chapter 11

11. Summary

This study focuses on enhancing the reliability of IoT (internet of things) and Al
(artificial intelligence) edge devices to advance the development of an ultra-smart society.
Specifically, we concentrated on ECUs (electronic control units) employed in self-driving
vehicle systems, which demand high functional safety, and on a new reconfigurable
device, the MPLD (memory-based programmable logic device), currently under
development for IoT and Al edge computing. We proposed testing methodologies

designed to improve the reliability of these edge devices.

Initially, for automotive ECU edge devices, we proposed a technique for test point
insertion and selection for multi-cycle BIST (built-in self-test), designed to improve test

quality and reduce test time.

Multi-cycle BIST has the potential to decrease the volume of scan-in patterns. This
study meticulously examined the stuck-at-fault detection model in the time-expanded
circuit. We found that the incongruity between controllability and observability of signal
lines, exacerbated by increasing capture cycles, incites issues of fault masking and fault
detection degradation. These issues hinder the effect of multi-cycle tests on test pattern
reduction. To address this problem, we introduced a test point insertion (TPI) technique
into a multi-cycle LBIST (logic BIST) scheme aimed at decreasing the volume of scan-
in patterns for target fault coverage. The proposed TPI method involves replacing partial
scan cells with fault detection scan flip-flops (FDS-FF), also known as observation point
insertion (OPI), to enhance observability. It also incorporates self-flipping control logic
into the combinational logic, termed control point insertion (CPI), to alleviate the
controllability bias of signal lines of the circuit under test (CUT) at the intermediate
capture cycles. We further propose a TPI procedure, which includes control point
insertion and observation point pruning, to identify effective test points leading to
maximum scan-in pattern reduction. Experimental results on ISCAS89 and ITC99
benchmarks demonstrate an average pattern reduction of 24.4X, thus validating the
proposed TPI’s effectiveness in reducing the test application time of power-on self-test
(POST). Future work aims to implement the proposed test point selection algorithm in an
industrial design to evaluate the effectiveness of the multi-cycle LBIST scheme on

commercial automotive ECUSs.

105

Subsequently, to ensure the reliability of MPLD devices, we proposed a high-quality
interconnect defect test method to improve the reliability during the manufacturing

process, and an aging monitoring technique for field reliability.

The proposed interconnect defect test method can identify stuck-at and bridge faults
at the address-data (AD) interconnects between MLUTs (multiple look-up tables) within
the MPLD device. This method also holds potential for actual field use as it can help
avoid configuring the logic into a faulty MLUT block, thereby ensuring higher reliability.
The test method consists of a configuration phase, which configures pre-generated
internal test data to create the route map in the MLUTs array for fault propagation paths,
and a logic phase, which applies pre-generated external test data to the MPLD’s external
logic output ports to excite target faults, observe faulty effects, and acquire the fault
propagation path set for fault location. This test method addresses both fault detection and
fault diagnosis in MPLDs. Our proposed test method has been validated through logic
simulation experiments on the designed MPLD with a 6x6 MLUTs array. The results
confirm its effectiveness in diagnosing the location of the injected stuck-at and bridge
faults. Future work will explore the test generation of internal and external test data to
identify other interconnect faults in the MPLD device, and consider methods such as
design for testability and built-in self-tests for the MPLD device.

The proposed aging monitoring technique aims to detect and report the aging state
of MPLD devices during field operation. The method involves periodically measuring the
delay of MLUTs (multiple look-up tables) during the operation of the MPLD devices,
using a specially designed delay monitor. This delay monitor is implemented using a ring
oscillator circuit compatible with the MPLD device structure. Furthermore, we designed
a new counter circuit, adapted to the MPLD structure, to store the ring oscillator’s
oscillation frequency for delay calculation. This method enables the measurement of both
the global delay (across all MLUTs) and the local delay (of specified MLUTSs) within the
MPLD device. To evaluate the proposed methods, we designed an MPLD with a 6x6
MLUTs array and conducted logic simulations by injecting delay into the MPLD. The
logic simulation results confirmed that the proposed method can effectively measure the
delay of the MLUTs with minor error. In future work, we aim to conduct a quantitative
analysis of aging phenomena and develop a precise simulation method along with an on-
chip test method. Furthermore, we intend to explore strategies to determine the total
number and locations of delay monitors needed to achieve a specific or higher level of in-
field reliability.

106

References

[10]

[11]

[12]

[13]

[17]

(18]

[19]

H. Fujiwara, Logic Testing and Design for Testability, The MIT Press, 1985.
M. Michael Vai, VLSI Design, CRC press, 2000.

M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-
Signal VLSI Circuits, Kluwer Academic Publishers, 2000.

Laung-Terng Wang, Cheng-Wen Wu, Xiaoqing Wen, VLSI Test Principles and Architectures: Design
for Testability (Systems on Silicon), Morgan Kaufmann Publishers Inc., San Francisco, CA, 2006.

E.R. Hnatek. Integrated circuit quality and reliability, 2nd edition. Marcell Dekker Inc, 1995.
A Charles E. Stroud, Designer’s Guide to Built-in Self-Test, Kluwer Academic Publishers, 2002.
A. Kirsti¢ and K.-T. Cheng, Delay Fault Testing for VLSI Circuits, Kluwer Academic Publishers, 1998.

1SO26262-5:2011, “Road vehicles - Functional Safety - Part 5: Product development at the hardware
level,” Online Browsing Platform, https://www.iso.org/obp/ui/#iso:std:is0:26262:-5:ed-1:v1:en,
accessed Jun. 18. 2023.

P. Girard, N. Bicolici, and X. Wen, Power-Aware Testing and Test Strategies for Low Power Devices,
Springer, ISBN 978-1-4419-0927-5, New York, 2010.

K. Ichino, T. Asakawa, S. Fukumoto, K. Iwasaki, and S. Kajihara, “Hybrid BIST using partially
rotational scan,” in Proc. ATS, 2001, pp. 379-384.

S. Narayanan, R. Gupta, M. A. Breuer: "Optimal Configuring of Multiple Scan Chains", IEEE Trans.
on Comp., Sep. 1993, pp.1121-1131

R. Kapur, S. Patil, T.J. Snethen, and T.W. Williams, “A weighted random pattern test generation
system,” IEEE Trans. CAD, vol. 15, no. 8, pp.1020-1025, Aug. 1996.

A. Jas, C.V. Krishna, and N.A. Touba, “Weighted pseudorandom hybrid BIST,” IEEE Trans. VLSI,
vol. 12, no. 12, pp. 1277-1283, Dec. 2004.

N.A. Touba and E.J. McCluskey, “Bit-fixing in pseudo-random sequences for scan BIST,” IEEE Trans.
CAD, vol. 20, no. 4, pp. 545-555, April 2001.

H.-J. Wunderlich and G. Kiefer, “Bit-flipping BIST,” in Proc. ICCAD, 1996, pp. 337-343.

S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois, “Built-in test for circuits with
scan based on reseeding of multiple-polynomial linear feedback shift registers,” IEEE Trans. Comput.,
vol. 44, no.2, pp. 223-233, Feb. 1995.

C. V. Krishna, A. Jas, and N. A. Touba, “Test Vector Encoding Using Partial LFSR Reseeding,” in
Proc. Intl. Test Conf. (ITC), Baltimore, MD, USA, Nov. 2001, pp. 885-893.

I. Pomeranz, “Computation of Seeds for LFSR-Based n-Detection Test Generation,” ACM Trans. Des.
Autom. Electron. Syst., vol. 22, no. 2, pp. 29:1-29:13, Jan. 2017.

J. P. Hayes and A. D. Friedman, “Test Point Placement to Simplify Fault Detection,” IEEE Trans.

107

Comput., vol. C-23, no. 7, pp. 727-735, Jul.1974.

[20] A.J. Briers and K. A. E. Totton, “Random Pattern Testability by Fast Fault Simulation,” in Proc. Intl.
Test Conf. (ITC), Washington, DC, USA, Sep. 1986, pp. 274-281.

[21] H. Vranken, F. S. Sapei, and H.-J. Wunderlich, “Impact of Test Point Insertion on Silicon Area and
Timing During Layout,” in Proc. Design, Automation, and Test in Europe Conf. (DATE), Paris, France,
Feb. 2004.

[22] O. Novak and J. Nosek, “Test-per-clock testing of the circuits with scan,” Proc. Int. On-Line Test
Workshop, 2001, pp. 90-92.

[23] S. Milewski, N. Mukherjee, J. Rajski, J. Solecki, J. Tyszer, and J. Zawada, “Full-scan LBIST with
capture-per-cycle hybrid test points”, Proc. ITC, 2017, paper 10.3.

[24] F. Zhang, D. Hwong, Y. Sun, A. Garcia, S. Alhelaly, G. Shofner, L. Winemberg, and J. Dworak,
"Putting wasted clock cycles to use: Enhancing fortuitous cell-aware fault detection with scan shift
capture,” Proc. ITC, 2016, paper 2.3.

[25] G. Mrugalski, J. Rajski, J. Solecki, J. Tyszer, and C. Wang, “Trimodal scan-based test paradigm,”
IEEE Trans. VLSI Systems, vol. 25, no. 3, pp. 1112-1125, March 2017.

[26] Y. Liu, N. Mukherjee, J. Rajski, S. M. Reddy and J. Tyszer, "Deterministic Stellar BIST for
Automotive ICs," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 8, pp. 1699-1710, Aug. 2020, doi: 10.1109/TCAD.2019.2925353.

[27] 1. Pomeranz and S. M. Reddy, "Static test compaction for scan-based designs to reduce test application
time", Proc. 7th Asian Test Symp. ATS, pp. 198-203, 1998.

[28] X. Lin and R. Thompson, "Test generation for designs with multiple clocks", Proc. Design Autom.
Conf., pp. 662-667, Jun. 2003.

[29] Kajihara, M. Matsuzono, H. Yamaguchi, Y. Sato, K. Miyase, and X. Wen, “On Test Pattern
Compaction with Multi-Cycle and Multi-Observation Scan Test,” Proc. Int’l. Symposium on Com.
and Inf. Tech. (ISCIT), Tokyo, pp. 723-726, Oct. 2010. DOI: 10.1109/ISCIT.2010.5665084

[30] Y. Huang, I. Pomeranz, S. M. Reddy and J. Rajski, “Improving the proportion of At-Speed Tests in
Scan BIST,” Int’l. Conf. on Computer Aided Design, San Jose, pp. 459-463, Nov. 2000. DOI:
10.1109/ICCAD.2000.896514

[31] E. K. Moghaddam, J. Rajski, S. M. Reddy and M. Kassab, “At-Speed Scan Test with Low Switching
Activity,” Proc. IEEE 28th VLSI Test Symposium, Santa Cruz, pp.177-182, April 2010. DOI:
10.1109/VTS.2010.5469580

[32] Y. Sato, S. Wang, T. Kato, K. Miyase and S. Kajihara, "Low Power BIST for Scan-Shift and Capture
Power," Proc. IEEE Asian Test Symposium, Niigata, pp. 173-178, 2012. DOI: 10.1109/ATS.2012.27

[33] I. Pomeranz, "Multicycle Tests with Fault Detection Test Data for Improved Logic Diagnosis," in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, doi:
10.1109/TCAD.2021.3079146.

[34] N. Devtaprasanna, A. Gunda, P. Krishnamurthy, S. M. Reddy, and 1. Pomeranz, "Methods for

108

improving transition delay fault coverage using broadside tests," in Proceedings of IEEE International
Conference on Test 2005, pp.256-265. doi: 10.1109/TEST.2005.1583983.

[35] L. Pomeranz, "Design-for-testability for multi-cycle broadside tests by holding of state variables," in

ACM Transactions on Design Automation of Electronic Systems, vol. 19, issue 2, article 19, pp 1-20.

[36] I. Pomeranz, “Enhanced Test Compaction for Multi-Cycle Broadside Tests By Using State
Complementation”, in ACM Transactions on Design Automation, November 2015, vol. 21, no. 1,
article 13.

[37] S. Wang et al., "Structure-Based Methods for Selecting Fault-Detection-Strengthened FF under Multi-
cycle Test with Sequential Observation," Proc. IEEE Asian Test Symposium, Hiroshima, pp. 209-214,
Nov. 2016. DOI: 10.1109/ATS.2016.40

[38] S. Wang, Y. Higami, H. Iwata, J. Matsushima and H. Takahashi, "Automotive Functional Safety
Assurance by POST with Sequential Observation," IEEE Design & Test Magazine. Vol.35, no.3,
pp-39-45, June 2018. DOI: 10.1109/MDAT.2018.2799801

[39] S. Wang, Y. Higami, H. Takahashi, H. Iwata, Y. Maeda and J. Matsushima, "Fault-detection-
strengthened method to enable the POST for very-large automotive MCU in compliance with
1SO26262," Proc. IEEE 23rd European Test Symposium, Bremen, pp. 1-2, 2018. DOI:
10.1109/ETS.2018.8400707

[40] S. Wang, et al., "Capture-Pattern-Control to Address the Fault Detection Degradation Problem of
Multi-Cycle Test in Logic BIST," Proc. IEEE Asian Test Symposium, Hefei, pp.155-160, 2018.
DOI:10.1109/ats.2018.00038

[41] H.T. Al-Awadihi, T. Aono, S. Wang, Y. Higami, H. Takahashi, H. Iwata, Y. Maeda, J. Matsushima,
“FF-Control Point Insertion (FF-CPI) to Overcome the Degradation of Fault Detection under Multi-
Cycle Test for POST,” IEICE Transactions on Information and Systems, 2020, Vol. E103.D, No. 11,
pp. 2289-2301, DOI:10.1587/transinf.2019EDP7235.

[42] P. K. Datla Jagannadha et al., “Special session: In-System-Test (IST) Architecture for NVIDIA Drive-
AGX Platforms,” In IEEE 37th VLSI Test Symposium (VTS), Monterey, CA, 1-8. 2019.
https://doi.org/10.1109/VTS.2019.8758636

[43] 1G. Mrugalski, J. Rajski, J. Tyszer, and B. Wlodarczak, “X-Masking for In-System deterministic test,”
In IEEE European Test Symposium (ETS), Barcelona, 1-6. 2022.
https://doi.org/10.1109/ETS54262.2022.9810407

[44] A. Rupani, D. Pandey and G. Sujediya, “Review and Study of FPGA Implementation of Internet of
Things,” Int. J. of Sci. Technol. & Eng., Vol. 3, Issue. 02, August 2016.

[45] Nithin M.R, Raisa Basheer and Sreela Mohan “Advanced Driver Assistance System using FPGA,”
QuEST Global Corp., May 2017.

[46] C.Wang, L. Gong, Q. Yu, X. Li, Y. Xie and X. Zhou, “DLAU: A Scalable Deep Learning Accelerator
Unit on FPGA,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Syst., vol. 36, no.
3, pp. 513-517, March 2017.

[47] 1. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” in EEE Transactions on

https://doi.org/10.1109/VTS.2019.8758636
https://doi.org/10.1109/ETS54262.2022.9810407

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[61]

[62]

109

Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 203-215, Feb. 2007.

T. Tuan and B. Lai, "Leakage power analysis of a 90nm FPGA," Proceedings of the IEEE 2003
Custom Integrated Circuits Conference, 2003., 2003, pp. 57-60.

TAIYO YUDEN CO LTD, “Reconfigurable semiconductor device”, Japan Patent JP2016208426A,
Dec. 08, 2016.

H. Puchner, L. Hinh, “NBTI reliability analysis for a 90nm CMOS technology,” in 30th Eur. Solid-
State Circuits Conf., Sept. 2004, pp.257-260.

F. Chen, M. Shinosky, “Addressing Cu/Low-k Dielectric TDDBReliability Challenges for Advanced
CMOS Technologies,” IEEE Trans. on Electron Devices, vol.56, no.1, pp.2-12, Jan. 2009.

D. Rossi, “The Effects of Ageing on the Reliability and Performance of Integrated Circuits,” in Ageing
of Integrated Circuits: Causes, Effects and Mitigation Techniques, B. Halak, Ed., Springer
International Publishing, 2020, pp. 35-64.

S. Sapatnekar, “What happens when circuits grow old: Aging issues in CMOS design,” in 2013 Int.
Symp. on VLSI Technol., Syst. and Appl. (VLSI-TSA), 2013, pp. 1-2.

M.S. Mispan (et al.), “Ageing Mitigation Techniques for SRAM Memories,” in Ageing of Integrated
Circuits: Causes, Effects and Mitigation Techniques, B. Halak, Ed., Springer International Publishing,
2020, pp. 91-111.

T. Q. Bui, L. D. Pham, H. M. Nguyen, V. T. Nguyen, T. C. Le, and T. Hoang, “An Effective
Architecture of Memory Built-In Self-Test for Wide Range of SRAM,” in 2016 Int. Conf. Adv.
Comput. Appl., pp. 121-124, 2016, doi: 10.1109/ACOMP.2016.026.

A. Sharma and V. Ravi, “Built in self-test scheme for SRAM memories,” in 2016 Int. Conf. Adv.
Comput. Commun. Informatics, pp. 1266—1270, 2016, doi: 10.1109/ICACCI.2016.7732220

S. Wang, Y. Higami, H. Takahashi, M. Sato, M. Katsu, and S. Sekiguchi, “Testing of Interconnect
Defects in Memory Based Reconfigurable Logic Device (MRLD),” in 2017 IEEE 26th Asian Test
Symp., pp. 17-22, 2017.

S. Wang et al., “Test Method for the Bridge Interconnect Faults in Memory Based Reconfigurable-
Logic-Device (MRLD) Considering the Place-and-Route,” in 33th Int. Tech. Conf. Circuits/Syst.,
Comput. Commun., 2018.

W. K. Huang, X. T. Chen, and F. Lombardi, “On the diagnosis of programmable interconnect systems:
Theory and application,” in Proc. 14th VLSI Test Symp., pp. 204-209, 1996, doi:
10.1109/VTEST.1996.510859

D. Das and N. A. Touba, “A low cost approach for detecting, locating, and avoiding interconnect faults
in FPGA-based reconfigurable systems,” in Proc. Twelfth Int. Conf. VLSI Des. (Cat. No.PR00013),
pp. 266-269, 1999, doi: 10.1109/ICVD.1999.745159.

T. Inoue, S. Miyazaki, and H. Fujiwara, “Universal fault diagnosis for lookup table FPGAs,” IEEE
Des. Test Comput., vol. 15, no. 1, pp. 39— 44, 1998, doi: 10.1109/54.655181.

Y. Sato, Seiji Kajihara, Y. Miura, T. Yoneda, S. Ohtake, M. Inoue, H. Fujiwara, “A Circuit Failure

110

[63]

[64]

[72]

[73]

[74]

[75]

[76]

Prediction Mechanism (DART) for High Field Reliability,” in 8th IEEE Int. Conf. on ASIC, Oct. 2009,
pp. 581-584.

M.S. Mispan (et al.), “Ageing Mitigation Techniques for SRAM Memories,” in Ageing of Integrated
Circuits: Causes, Effects and Mitigation Techniques, B. Halak, Ed., Springer International Publishing,
2020, pp. 91-111.

Y. Tsugita, K.Ueno, T. Hirose, T. Asai, Y. Amemiya, “An on-chip PVT compensation technique with
current monitoring circuit for low-voltage CMOS digital LSIs,” IEICE Trans. on Electronics, vol. 93,
no. 6, pp. 835-841, 2010.

M. Bhushan, A. Gattiker, M. B. Ketchen and K. K. Das, “Ring oscillators for CMOS process tuning
and variability control,” IEEE Trans. on Semicond. Manuf., vol. 19, no. 1, pp. 10-18, Feb. 2006.

Poki Chen, Chun-Chi Chen, Chin-Chung Tsai and Wen-Fu Lu, “A time-to-digital-converter-based
CMOS smart temperature sensor,” IEEE J. of Solid-State Circuits, vol. 40, no. 8, pp. 1642-1648, Aug.
2005.

S. Kajihara, Y. Miyake, Y. Sato and Y. Miura, “An On-Chip Digital Environment Monitor for Field
Test,” in 2014 IEEE 23rd Asian Test Symp., Nov. 2014, pp. 254-257.

Y. Miyake, Y. Sato, S. Kajihara and Y. Miura, “Temperature and Voltage Measurement for Field Test
Using an Aging-Tolerant Monitor,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol.
24, no. 11, pp. 3282-3295, Nov. 2016.

Y. Miyake, Y. Sato and S. Kajihara, “On-Chip Delay Measurement for In-Field Test of FPGAs,” in
2019 IEEE 24th Pacific Rim Int. Symp. on Dependable Computing (PRDC), Kyoto, Japan, Dec. 2019,
pp- 130-1307.

K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.

T. Ochiai, S. Watanabe, S. Katagiri, T. Hori, J. Hershey, “Speaker Adaptation for Multichannel End-
to-End Speech Recognition,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6707-6711, 2018.

S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, D. Quillen, “Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collection,” Int. J. Robot. Res., vol. 37, no. 4-5, pp.
421-436, Apr. 2018.

A. Wheeldon, R. Shafik, T. Rahman, J. Lei, A. Yakovlev, and O.-C. Granmo, “Learning automata
based energy-efficient Al hardware design for loT applications,” Philos. Trans. R. Soc. A Math. Phys.
Eng. Sci., vol. 378, no. 2182, p. 20190593, Oct. 2020.

J. Misra and 1. Saha, “Artificial neural networks in hardware: A survey of two decades of progress,”

Neurocomputing, vol. 74, no. 1, pp. 239-255, 2010.

Z. Fan, F. Qiu, A. Kaufman, S. Yoakum-Stove, “GPU Cluster for High Performance Computing,” in
Proc. ACM/IEEE Conf. on Supercomputing, Nov. 2004.

E. Mizell, R. Biery, Introduction to GPUs for Data Analytics Advances and Applications for
Accelerated Computing, O’Reilly, 2017.

111

[77] N. Singh, S. P. Panda, “Enhancing the Proficiency of Artificial Neural Network on Prediction with
GPU,” in Int. Conf. on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon),
Oct. 2019.

[78] Y. Kim, H. Choi, J. Lee, J. Kim, H. Jei, H. Roh, “Efficient Large-Scale Deep Learning Framework for
Heterogeneous Multi-GPU Cluster,” in 2019 IEEE 4th Int. Workshops on Foundations and
Applications of Self* Systems (FAS*W), Jun. 2019.

[79] NVIDIA, “NVIDIA A100 Tensor core GPU,” NVIDIA, 2020.

[80] Y Hui, J Lien, X Lu, “Three-Dimensional Characterization on Edge Al Processors with Object
Detection Workloads,” in Int. Conf. for High Performance Computing, Networking, Storage, and
Analysis, Nov. 2019.

[81] K. Guo, S. Zeng, J. Yu, Y. Wang, H. Yang, “A Survey of FPGA-based Neural Network Inference
Accelerators,” J ACM Trans. Reconfigurable Technol. Syst., Vol. 12, No. 1, Article No.: 1, pp. 1-26,
Apr. 2019.

[82] F. Piazza, A. Uncini and M. Zenobi, “Neural networks with digital LUT activation functions,” Proc.
Int. Jt. Conf. Neural Networks (IICNN), vol. 2, pp. 1401-1404, 1993.

[83] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe, “Binary neural
networks: A survey. Pattern Recognition”, in Pattern Recognition, 2020.

112

List of Publication

Journal Publications

1.

Senling Wang, Xihong Zhou, Yoshinobu Higami, Hiroshi Takahashi, Hiroyuki Iwata, Yoichi Maeda,
Jun Matsushima, “Test Point Insertion for Multi-Cycle Power-On Self-Test,” ACM Transactions on
Design Automation of Electronic Systems (ACM TODES), Vol. 28, No. 3, pp. 1-21, May 2023.

International Conferences Publications

1.

Xihong Zhou, Senling Wang, Yoshinobu Higami, Hiroshi Takahashi, Mitsunori Katsu, Shoichi
Sekiguchi, “MNN: A Solution to Implement Neural Networks into a Memory-based Reconfigurable
Logic Device (MRLD),” in 36th International Technical Conference on Circuits, Systems, Computers,
and Communications (ITC-CSCC), Jun. 2021.

Xihong Zhou, Senling Wang, Yoshinobu Higami, Hiroshi Takahashi, “Aging Monitoring for Memory-
based Reconfigurable Logic Device (MRLD),” in 35th International Technical Conference on
Circuits, Systems, Computers, and Communications (ITC-CSCC), Jul. 2020.

International Conferences Presentations

1.

Xihong Zhou, “Study on the High Reliability of MPLD (Memory-based Programmable Logic
Device),” in Asian Test Symposium, Ph.D. Thesis Competition, Semi-Final of 2023 TTTCs E. J.
McCluskey Doctoral Thesis Award (ATS Doctoral Thesis Award), Nov. 2022.

Xihong Zhou, Senling Wang, Yoshinobu Higami, Hiroshi Takahashi, “Diagnosis for Interconnect
Faults in Memory-based Reconfigurable Logic Device,” in 22nd IEEE Workshop on RTL and High
Level Testing (WRTLT), Nov. 2021.

National Conferences

1.

Xihong ZHOU, Senling WANG, Yoshinobu HIGAMI, Hiroshi TAKAHASHI, Masayuki SATO,
Mitsunori KATSU, Shoichi SEKIGUCHI, “Implementing Neural Networks on Memory-based
Reconfigurable Logic Device (MRLD),” in 30th Microelectronics Symposium (MES), Sep. 2020.

Ji HIAL, F fRLv A, fiE B5, @B E AT) _X— AR T N A(MRLD)IZ
FALACIREERR N DT DD) o T A L—FFHE” 34 [flr L2 fm =2 X FEREFLE
FAIE AL EE (JIEP), Mar. 2020.

HE OEC, bR #GL, B AL, F &L, MR EE, 86 E5, AW EsE, BTE E,
FAUE M, “~ L TF A 7T A MIBET SHMERHBILDOTD DT A NARA o MEAIE,”
B FHE G FR L7 A5 (IEICE-DC), vol. 119, no. 420, pp. 19-24, Feb. 2020.

P s N, wal B—8, PhE HRAL, O KA, fEAR Eh, ARE ML, PR ok, B
AL, WTEF UE, AT W, —f BN, B 4%, WA 2R, PR L BE E, E &ArA,
“Raspberry Pi & W\ 72 B[f§ LB & CNN (2 X DU NE R OFH T AT L OREE,” SR F
JE R KU BIF P2 VY [F 5 5 A 2 X HE (CD-ROM) (SJCIEE), 2019.

JiABAL, F RLA, S Vv Ra— RENEZFIH LZERSE S AT 2O, &
SUBTER F 2 VY [F & 5 A= (SICIEE), 2018.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Background
	1.2 Objective
	1.2.1 Reliability Enhancement for Automotive ECU Edge Devices
	1.2.2 Reliability Enhancement for MPLD Edge Devices

	1.3 Structure of this Dissertation

	2. Preliminary
	2.1 Integrated Circuit
	2.1.1 Digital Logic Circuit
	2.1.2 Combinational and Sequential Logic Circuit
	2.1.3 Latch and Flip-flop
	2.1.4 Register
	2.1.5 SRAM
	2.1.6 Transistor

	2.2 Integrated Circuit Reliability
	2.3 Integrated Circuit Test
	2.3.1 Purpose of Test
	2.3.2 Test Principle

	2.4 Fault Models
	2.4.1 Stuck-at Fault Model
	2.4.2 Bridging Fault Model
	2.4.3 Delay Fault Model

	2.5 Test Generation
	2.5.1 Logic Simulation
	2.5.2 Fault Simulation
	2.5.3 Fault Coverage

	2.6 Design for Testability
	2.6.1 Scan Design
	2.6.2 Logic Built-In Self-Test
	2.6.3 Test Point Insertion

	3. Multi-Cycle Test Scheme
	3.1 Scan BIST
	3.2 Multi-cycle BIST
	3.3 The Problems of Multi-cycle BIST
	3.3.1 Fault Masking
	3.3.2 Fault Detection Degradation Problem (FDD)

	4. Fault Detection Model in Multi-Cycle BIST
	5. Test Point Insertion and Selection for Multi-Cycle BIST
	5.1 Test Points for Multi-Cycle BIST
	5.1.1 Observation Point: FDS-FF
	5.1.2 Control Point: Self-Flipping CP

	5.2 TP Selection for Multi-Cycle BIST
	5.2.1 A New Evaluation Metrics for CP Selection
	5.2.2 TP Selection Procedure for Multi-cycle BIST

	5.3 Experimental Results
	5.3.1 Evaluation of the Efficiency of the Multi-Cycle Test
	5.3.2 Evaluation of the Efficiency of the CPI and the OPI

	5.4 Conclusions

	6. Memory-based Programmable Logic Device (MPLD)
	6.1 MPLD Architecture
	6.1.1 MPLD Structure: MLUTs (Multiple Look-up Tables) Array
	6.1.2 MPLD Memory Operation Mode
	6.1.3 MPLD Logic Operation Mode

	6.2 MPLD Work Principle

	7. Reliability issue in MPLD
	7.1 Manufacturing-Defects-caused Reliability Issue
	7.2 Field-Aging-caused Reliability Issue
	7.3 Conclusions

	8. Interconnect Defect Test for MPLD
	8.1 Interconnect Fault Models in MPLD
	8.1.1 Stuck-at Interconnect Faults
	8.1.2 Bridge Interconnect Faults

	8.2 Test Method for Interconnect Faults
	8.2.1 Test Strategy for Fault Detection and Location
	8.2.2 Test Generation

	8.3 Simulation Results
	8.3.1 Verification of Testing to Stuck-at Interconnect Faults
	8.3.2 Verification of Testing to Bridge Interconnect Faults

	8.4 Discussion
	8.4.1 Test Effectivity for Interconnect Faults
	8.4.2 Time Complexity of the Test Procedure
	8.4.3 Test Availability for Multiple Interconnect Fault

	8.5 Conclusions

	9. Aging monitoring for MPLD
	9.1 Delay-Monitoring technologies
	9.2 Delay Monitoring in MPLD
	9.2.1 Ring Oscillator (RO)
	9.2.2 Delay Monitor Design Using RO

	9.3 Simulation Results
	9.4 Discussion
	9.4.1 Overhead of Inserting Delay Monitor
	9.4.2 Work Scope of Delay Monitor
	9.4.3 Locating Abnormal MLUTs

	9.5 Conclusions

	10. A Solution to Implement Neural Networks in MPLD
	10.1 LUT-based neuron model
	10.2 MPLD-based Neural Network (MNN)
	10.2.1 A sparse neural network: MNN
	10.2.2 Implementing MNN into MPLD

	10.3 Experimental Results
	10.3.1 Confirm LUT-based Neuron Model
	10.3.2 Confirm Proposed MNN

	10.4 Conclusions

	11. Summary
	References
	List of Publication

