

Study on the Reliability Enhancement of

Edge Computing Devices

A Thesis

Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in Engineering

By

Xihong Zhou

Supervisor: Hiroshi Takahashi (Full Professor)

Graduate School of Science and Engineering

Ehime University

I

Abstract

The recent rapid evolution of Internet of Things (IoT) and Artificial Intelligence (AI)

technologies has accelerated the emergence of a smart society where every object can

interface with the internet. This connectivity facilitates real-time data collection and

analysis. One of the pivotal challenges within this context is maintaining the integrity and

reliability of edge devices—key components of IoT systems operating within a 5G

environment. The accumulation of inaccurate data from compromised edge devices may

incur erroneous decision-making, thus compromising the overall system reliability and

deteriorating trust in the smart society.

This study addresses the reliability issues of two distinct types of edge devices:

electronic control units (ECUs) deployed within advanced driving-assistant systems

(ADAS), and an innovative memory-based programmable logic device (MPLD)

specifically engineered for executing AI functionality in IoT systems.

The initial objective of this study is to enhance the reliability of ECU devices,

instrumental in automotive control systems. Adherence to functional safety standards,

specifically ISO 26262, is a mandatory requirement for these devices. Under the

functional safety standard ISO 26262, automotive systems necessitate in-field testing,

such as the power-on self-test (POST). The POST examines safety-critical components

during the system’s startup, prior to executing any functional operations. This test is vital

for the early detection of potential internal faults to prevent system failures. Nevertheless,

for testing automotive ECUs, the POST requires minimal test application time to achieve

essential test quality (e.g., >90% latent fault metric) to meet the functional safety criteria

of ISO 26262. This research proposes a performance-enhanced POST, specifically the

Multi-Cycle Power-on Self-Test, which applies multiple test clocks to execute numerous

function operations after a root test pattern is set into the Circuit Under Test (CUT). To

address fault-masking and fault detection degradation under multi-cycle testing, this

study presents a test point insertion technique to reduce test application time while

maintaining superior fault detection for multi-cycle POST. Moreover, a method is devised

to identify a user-specified number of test points capable of achieving the greatest scan-

in pattern reduction to attain a target test coverage.

The secondary objective concentrates on enhancing the reliability of MPLD edge

devices. These are particularly designed for low power consumption and low latency in

edge computing applications. This study explores two fundamental aspects of MPLD

II

reliability: interconnect defect testing during the manufacturing phase and aging

monitoring techniques to ensure field reliability. During the manufacturing process, the

detection of interconnect faults in the memory-based programmable elements (MLUTs:

multiple look-up tables) array is of critical importance to yield improvement and the

assurance of high reliability. The study proposes a comprehensive test method capable of

detecting and identifying stuck-at and bridge faults in the interconnects between MLUTs.

Moreover, to guarantee long-term field reliability, an aging monitoring technique is

proposed that employs a ring oscillator circuit to periodically measure the delay of

MLUTs. This method facilitates the detection of aging-induced delays, potentially leading

to performance degradation and system failures, thereby ensuring the in-field reliability

of MPLD devices.

Extensive experiments and simulations on benchmark circuits demonstrate the

effectiveness of the test point insertion technique, achieving a significant reduction in test

application time while maintaining high fault detection quality for the automotive ECUs.

The interconnect defect test method for MPLDs successfully identifies and locates single

interconnect faults, contributing to enhanced manufacturing processes and field reliability.

The aging monitoring technique accurately gauges the delay of MLUTs, yielding

invaluable insights into the operational aging state of MPLD devices.

This study constitutes a significant contribution to the field of reliability

enhancement for IoT and AI edge devices, with a specific emphasis on automotive ECUs

and MPLDs. The proposed techniques grapple with the challenges of ensuring functional

safety and long-term reliability in these devices, which are vital for the development of a

smart society. Future research directions include the exploration of additional fault

detection methods, test generation techniques, and design for testability approaches for

MPLDs. Furthermore, the study of quantitative analysis and on-chip test methods will be

pursued to deepen the understanding and management of aging phenomena in these

devices.

III

Table of Contents

Abstract .. I

Table of Contents .. III

List of Figures ... VI

List of Tables ... IX

Part I: Introduction and Preliminary ... 1

1. Introduction .. 2

1.1 Background ... 2

1.2 Objective .. 2

1.2.1 Reliability Enhancement for Automotive ECU Edge Devices .. 3

1.2.2 Reliability Enhancement for MPLD Edge Devices ... 3

1.3 Structure of this Dissertation ... 4

2. Preliminary .. 5

2.1 Integrated Circuit ... 5

2.1.1 Digital Logic Circuit .. 5

2.1.2 Combinational and Sequential Logic Circuit .. 6

2.1.3 Latch and Flip-flop .. 8

2.1.4 Register ... 9

2.1.5 SRAM .. 10

2.1.6 Transistor .. 11

2.2 Integrated Circuit Reliability ... 12

2.3 Integrated Circuit Test .. 13

2.3.1 Purpose of Test ... 13

2.3.2 Test Principle .. 14

2.4 Fault Models .. 15

2.4.1 Stuck-at Fault Model ... 15

2.4.2 Bridging Fault Model .. 16

2.4.3 Delay Fault Model .. 16

2.5 Test Generation ... 17

2.5.1 Logic Simulation .. 18

2.5.2 Fault Simulation ... 18

2.5.3 Fault Coverage ... 19

2.6 Design for Testability .. 19

2.6.1 Scan Design ... 19

2.6.2 Logic Built-In Self-Test .. 20

2.6.3 Test Point Insertion .. 22

IV

Part II: Test Point Insertion for Multi-Cycle Power-On Self-Test 23

3. Multi-Cycle Test Scheme .. 28

3.1 Scan BIST .. 28

3.2 Multi-cycle BIST ... 28

3.3 The Problems of Multi-cycle BIST .. 29

3.3.1 Fault Masking ... 29

3.3.2 Fault Detection Degradation Problem (FDD) .. 30

4. Fault Detection Model in Multi-Cycle BIST .. 31

5. Test Point Insertion and Selection for Multi-Cycle BIST 34

5.1 Test Points for Multi-Cycle BIST... 34

5.1.1 Observation Point: FDS-FF .. 34

5.1.2 Control Point: Self-Flipping CP ... 36

5.2 TP Selection for Multi-Cycle BIST .. 37

5.2.1 A New Evaluation Metrics for CP Selection ... 38

5.2.2 TP Selection Procedure for Multi-cycle BIST .. 40

5.3 Experimental Results .. 42

5.3.1 Evaluation of the Efficiency of the Multi-Cycle Test .. 43

5.3.2 Evaluation of the Efficiency of the CPI and the OPI .. 45

5.4 Conclusions .. 48

Part III: Test to Memory-based Programmable Logic Device 49

6. Memory-based Programmable Logic Device (MPLD) ... 52

6.1 MPLD Architecture .. 52

6.1.1 MPLD Structure: MLUTs (Multiple Look-up Tables) Array 53

6.1.2 MPLD Memory Operation Mode ... 53

6.1.3 MPLD Logic Operation Mode .. 55

6.2 MPLD Work Principle.. 58

7. Reliability issue in MPLD .. 60

7.1 Manufacturing-Defects-caused Reliability Issue .. 60

7.2 Field-Aging-caused Reliability Issue ... 62

7.3 Conclusions .. 63

8. Interconnect Defect Test for MPLD .. 65

8.1 Interconnect Fault Models in MPLD .. 66

8.1.1 Stuck-at Interconnect Faults ... 66

8.1.2 Bridge Interconnect Faults .. 66

8.2 Test Method for Interconnect Faults ... 67

8.2.1 Test Strategy for Fault Detection and Location ... 68

8.2.2 Test Generation .. 72

V

8.3 Simulation Results .. 77

8.3.1 Verification of Testing to Stuck-at Interconnect Faults .. 78

8.3.2 Verification of Testing to Bridge Interconnect Faults ... 79

8.4 Discussion .. 80

8.4.1 Test Effectivity for Interconnect Faults .. 80

8.4.2 Time Complexity of the Test Procedure ... 81

8.4.3 Test Availability for Multiple Interconnect Fault .. 81

8.5 Conclusions .. 83

9. Aging monitoring for MPLD ... 85

9.1 Delay-Monitoring technologies .. 85

9.2 Delay Monitoring in MPLD ... 86

9.2.1 Ring Oscillator (RO) .. 87

9.2.2 Delay Monitor Design Using RO .. 87

9.3 Simulation Results .. 89

9.4 Discussion .. 90

9.4.1 Overhead of Inserting Delay Monitor .. 90

9.4.2 Work Scope of Delay Monitor ... 90

9.4.3 Locating Abnormal MLUTs .. 90

9.5 Conclusions .. 92

Part IV: Application of MPLD .. 93

10. A Solution to Implement Neural Networks in MPLD ... 94

10.1 LUT-based neuron model ... 96

10.2 MPLD-based Neural Network (MNN) .. 97

10.2.1 A sparse neural network: MNN .. 97

10.2.2 Implementing MNN into MPLD ... 98

10.3 Experimental Results .. 100

10.3.1 Confirm LUT-based Neuron Model ... 100

10.3.2 Confirm Proposed MNN ... 102

10.4 Conclusions .. 103

11. Summary ... 104

References .. 106

List of Publication .. 112

VI

List of Figures

Figure 2.1 Symbols, logic functions, and truth tables of some common logic gates. 6

Figure 2.2 Combinational and sequential logic circuits. .. 7

Figure 2.3 Synchronous and asynchronous sequential circuits. .. 7

Figure 2.4 Bistable circuit. ... 8

Figure 2.5 SR-latch. ... 8

Figure 2.6 D-latch. .. 9

Figure 2.7 D flip-flop. .. 9

Figure 2.8 Register. ... 10

Figure 2.9 Shift register. ... 10

Figure 2.10 Schematic diagram for an SRAM. ... 11

Figure 2.11 Transistors. .. 11

Figure 2.12 Bathtub curve for IC reliability. .. 12

Figure 2.13 Basic scheme of IC testing.. 14

Figure 2.14 Example of stuck-at fault model. ... 15

Figure 2.15 Bridging fault: wired-AND/wired-OR bridging fault models. 16

Figure 2.16 Delay fauls: slow-to-rise (slow-to-fall) faults. .. 17

Figure 2.17 Test generation procedure. .. 18

Figure 2.18 Schematic for a scan design. ... 20

Figure 2.19 Example for implementing a SFF: Muxed-D scan cell. ... 20

Figure 2.20 Basic architecture of LBIST. ... 21

Figure 2.21 n-stage modular LFSR. .. 21

Figure 2.22 n-stage MISR. ... 22

Figure 2.23 Two typical types of test points. .. 22

Figure 3.1 Test operations in multi-cycle BIST... 29

Figure 4.1 Single stuck-at fault detection in time-expanded circuit. ... 31

Figure 4.2 Testability vs. Capture Cycles ... 33

Figure 5.1 The DFT architecture of FDS-FF insertion for LBIST... 34

Figure 5.2 Replace a scan-FF with FDS-FF to address fault masking. .. 35

Figure 5.3 Self-Flipping CP insertion for multi-cycle LBIST. .. 36

Figure 5.4 The combinational logic frame of s27 circuit. .. 39

Figure 5.5 Fault coverage of benchmark circuit with 100k patterns. ... 44

Figure 5.6 Scan testing vs multi-cycle testing. ... 44

Figure 5.7 Fault coverage vs. Pattern number (scan testing, multi-cycle testing, OPI and CPI under

VII

multi-cycle testing). .. 46

Figure 6.1 MPLD Architecture. .. 52

Figure 6.2 Schematic of MPLD working in memory operation mod. ... 54

Figure 6.3 Schematic of MLUT working in memory operation mod. ... 54

Figure 6.4 Schematic of MPLD working in memory operation mod. ... 55

Figure 6.5 Schematic of MLUT working in memory operation mod. ... 56

Figure 6.6 ATD circuit. .. 56

Figure 6.7 Functional operation of logic output control circuit. ... 57

Figure 6.8 Logic configuration in a single MLUT. ... 58

Figure 6.9 Configure a logic circuit in two MLUTs. ... 59

Figure 7.1 Manufacturing defects in MPLD. .. 61

Figure 7.2 Interconnect defect causes logic fault in configured circuit.. 61

Figure 7.3 Aging progresses in MPLD. ... 62

Figure 7.4 Aging caused ATD detection error. .. 63

Figure 8.1 Stuck-at interconnect fault models. ... 66

Figure 8.2 Bridge interconnect fault models. .. 67

Figure 8.3 Interconnect fault detection idea. .. 69

Figure 8.4 A universal diagnosis procedure for FPGA [61]. .. 70

Figure 8.5 Route maps for an MLUT with 4-pair AD interconnects. .. 71

Figure 8.6 Testing mechanisms under route maps to locate an interconnect fault. 72

Figure 8.7 Example of test cube in the MLUT for horizontal route map. 74

Figure 8.8 Example of test cube in the MLUT for vertical route map. .. 75

Figure 8.9 Example of test cube in the MLUT for diagonal route map. 75

Figure 8.10 Applying mechanisms of external patterns. .. 76

Figure 8.11 Apply all-zero to excite stuck-at-1 fault. .. 77

Figure 8.12 Apply walking-zero to excite AND-bridge fault. ... 77

Figure 8.13 MPLD with 6×6 MLUTs array. ... 78

Figure 8.14 Simulation result of the test under rm1 for sa0. ... 79

Figure 8.15 Simulation result of the test under rm2 for sa0. ... 79

Figure 8.16 Simulation result of the test under rm1 for ORbd. ... 80

Figure 8.17 Simulation result of the test under rm2 for ORbd. ... 80

Figure 8.18 Example to identify multiple faults. ... 82

Figure 9.1 Concept of delay monitoring techniques. ... 86

Figure 9.2 Ring oscillator. .. 87

Figure 9.3 Delay monitor; (a) RO in MLUTs, (b) counter for RO. ... 88

Figure 9.4 RO and counter in MLUTs to be measured for the delay. .. 89

VIII

Figure 9.5 Simulation waveform to measure delay for MLUT. .. 90

Figure 9.6 Delay-monitors deploying method. ... 91

Figure 10.1 A NN neuron. .. 96

Figure 10.2 LUT-based neuron model in a single MLUT. ... 96

Figure 10.3 A fully connected NN. ... 97

Figure 10.4 Connection limit in MPLD. .. 97

Figure 10.5 Sparse connection in unit of MLUT in MPLD. ... 98

Figure 10.6 Proposed MNN (MPLD-based Neural Network) .. 98

Figure 10.7 Feature extraction in MNN. .. 98

Figure 10.8 MNN wiring connection way in MPLD. .. 99

Figure 10.9 A size of 4×4×4 NN constructed in 3 MLUTs. ... 100

Figure 10.10 LUT-based neuron model for the size of 4×4×4 NN. ... 101

Figure 10.11 Experimental results for the LUT-based neuron model. 101

Figure 10.12 MNN and FNN training result in 50 epochs. .. 102

Figure 10.13 MNN training result in 150 epochs. ... 102

IX

List of Tables

Table 5.1 Evaluation metrics of signal lines in s27 .. 39

Table 5.2 Detailed information of benchmark circuits ... 43

Table 5.3 The final fault coverage reached by 100K scan-in patterns ... 47

Table 5.4 The number of scan-in patterns to achieve 90% fault coverage 47

Table 8.1 Test cubes to create route maps for the MLUT with m-pair AD interconnects 74

Table 8.2 External test patterns applied to external inputs of MPLD .. 76

Table 8.3 Test effectivity for all single AD interconnect faults. ... 81

1

Part I: Introduction and Preliminary

2

Chapter 1

1. Introduction

1.1 Background

In recent years, rapid advancements in IoT (internet of things) and AI (artificial

intelligence) technologies have made the realization of an ultra-smart society more

plausible. In such a society, every object connects to the internet, enabling real-time data

collection and analysis. Particularly, in IoT systems within a 5G environment, a vast

number of edge devices (integrated circuits) connect to the cloud, facilitating data

collection and analysis.

However, if we don’t ensure the integrity of edge devices, inaccurate data could be

collected in the cloud, leading to erroneous decision-making based on data analysis. This

might result in decreased system reliability, undermining the safety and confidence of the

ultra-smart society.

Simultaneously, with the rapid progress of AI technology, AI edge devices with

intelligent capabilities are evolving at the data generation source, i.e., the edge endpoints.

This reduces the dependence on cloud systems and enables real-time data analysis and

processing on edge devices. However, physical defects in AI edge devices may decrease

the accuracy of intelligent processing.

To secure the ultra-smart society, high-reliability technology for IoT and AI edge

devices is indispensable. The primary factor that impairs the reliability of edge devices is

“failure.” While various approaches such as high-quality manufacturing tests before

shipment, redundancy, and duplication techniques have been proposed, establishing field

testing techniques during edge device operation remains a challenge. Furthermore, there

is a need for testing techniques to guarantee the reliability of specially designed edge

computing devices that have been newly developed.

1.2 Objective

Edge devices are broadly classified into two categories: non-reconfigurable devices,

such as ECUs (electronic control units), and reconfigurable devices, such as FPGAs

(field-programmable gate arrays). In recent years, with the progress of self-driving cars,

the functional safety of ECUs in automotive systems has become a fundamental

3

requirement according to the ISO 26262 standard. On the other hand, the requirements of

edge devices, such as low power consumption and small latency, hinder the application

of traditional reconfigurable devices in edge processing. To address this, a new type of

reconfigurable device named MPLD (memory-based programmable logic device)

specially designed for edge processing is being developed. Therefore, this study focuses

on two objectives:

(1) Reliability enhancement for automotive ECU edge devices.

(2) Reliability enhancement for MPLD edge devices.

1.2.1 Reliability Enhancement for Automotive ECU Edge Devices

First, this study aims to develop fault detection enhancement technologies to meet

functional safety standards for automotive ECU edge devices.

Automotive ECU edge devices play a critical role in automotive control systems,

and improving their reliability is essential. According to the functional safety standard

ISO 26262, automotive systems must undergo field-testing, such as power-on self-test

(POST). Unlike production testing, POST needs to reduce test application time and meet

the test quality (e.g., >90% latent failure indicator), indispensable for ISO 26262. By

developing high-speed and high-quality fault detection methods in field testing, we can

ensure accurate fault detection and thus functional safety of automotive ECU edge

devices.

Specifically, to enhance the reliability of automotive ECUs, our goal is to develop a

fast built-in self-test (BIST) method that can satisfy test quality and detect faults in

automotive ECUs edge devices in real-time. Based on this goal, this study proposes a test

point insertion technique for multi-cycle power-up self-test to reduce test application time

with indispensable test quality.

1.2.2 Reliability Enhancement for MPLD Edge Devices

Next, this study will shift our focus to the reconfigurable edge device MPLD and

develop fault detection and fault state warning techniques for its reliability.

The MPLD is built exclusively with an array of MLUTs (multiple look-up tables)

without any additional programmable interconnect resources. An MLUT is the essential

reconfigurable element constructed by SRAMs (static random-access memories). In

contrast to traditional reconfigurable device FPGAs, the MPLD can achieve a high

density of programmable devices with low power consumption and minimal delay.

4

During the production phase of the MPLD, a variety of defects may exist in the

SRAM memory of the MLUT. Conventional memory testing methods are available for

these memory defects. However, a significant number of defects could also be present on

the interconnects between MLUTs; these defects could cause considerable yield loss and

reliability degradation.

In addition, when the MPLD operates in the field, various aging phenomena such as

HCI (hot carrier injection) and BTI (bias temperature instability) could cause aging-

induced delays in the MLUT array of the MPLD. The rate of aging progress in the MLUT

array may vary. Frequently-used MLUTs may exhibit faster aging speeds, meaning the

aging-induced delay would be larger. These variations in aging-induced delay could affect

the performance of configured logic circuits and even cause a system failure, threatening

the in-field reliability of the device.

Therefore, to guarantee the long-term reliability of the MPLD, this study proposes

test techniques tailored to its specific needs. These include a test method to detect and

identify interconnect defects in the MLUT array during the production phase and a delay

monitoring technique to detect aging-induced failures in the field.

1.3 Structure of this Dissertation

This dissertation is organized as follows:

Part I Introduction and Preliminary

Chapter 1 introduces this study.

Chapter 2 introduces some important concepts in integrated circuits and test techniques

that are relevant to this study.

Part II Test Point Insertion for Multi-Cycle Power-On Self-Test

Chapter 3 introduces multi-cycle test scheme.

Chapter 4 introduces fault detection model in multi-cycle BIST.

Chapter 5 introduces proposed methods of test point insertion and selection for multi-

cycle BIST.

Part III Test to Memory-based Programmable Logic Device

Chapter 6 gives an introduction to the MPLD.

Chapter 7 introduces reliability issue in MPLD.

Chapter 8 proposes test method to identify interconnect defect in MPLD.

Chapter 9 proposes aging monitoring technique for MPLD.

Part IV Application of MPLD

Chapter 10 introduces a solution to implement neural networks into MPLD

Chapter 11 outlines a summary of this study.

5

Chapter 2

2. Preliminary

This chapter introduces some important concepts related to this study, including

integrated circuit (IC) concepts, reliability of IC, principles of IC testing, fault modeling,

test generation, fault simulation, and design for test (DFT) techniques.

2.1 Integrated Circuit

An integrated circuit (IC), also known as a microchip or simply a chip, is a miniature

electronic device that contains thousands, millions, or even billions of electronic

components, such as transistors, resistors, capacitors, and diodes, fabricated onto a single

semiconductor material, typically silicon. These components are interconnected by

conductive pathways etched into the chip’s surface, forming a complex network of

electronic circuits. The integration of numerous components onto a single chip allows for

the creation of compact, lightweight, and highly efficient electronic systems.

Integrated circuits can be classified into various types, including digital, analog, and

mixed-signal (which consist of both digital and analog signaling on the same IC)

integrated circuits. Each type is tailored for specific applications. However, this

dissertation will not cover analog and mixed-signal integrated circuits.

2.1.1 Digital Logic Circuit

A digital circuit is also known as a logic circuit because it carries out logical

operations on digital signals. Logic (or digital) circuits are constructed by interconnecting

elements called gates (or logic gates) whose inputs and outputs represent only the values

in terms of 0 and 1 [1].

Some of the common logic gates are AND, OR, NOT, NAND, NOR (an inverter),

and XOR (Exclusive-OR); with symbols as shown in Figure 2.1. The output of each gate

can be represented by a logic function of the inputs, i.e., a Boolean function. The Boolean

(logic) operations ⋀ (∙), ⋁ (+), ¬ (¯), and ⨁ correspond to AND, OR, NOT, and XOR,

respectively. A logic function can often be also specified by a truth table. These gates are

fundamental building blocks in digital logic circuits and are used to perform various

logical operations in computer systems and electronic devices. A summary of the logical

operations performed by these gates is as following [1].

6

Figure 2.1 Symbols, logic functions, and truth tables of some common logic gates.

Logical Operations

AND gate: The output is 1 only when both inputs are 1. E.g., the output z of an AND gate with

inputs x1 and x2 is 1 if and only if both of its inputs are 1 simultaneously, and the logic function

can be expressed as

z = x1 ⋀ x2 (or z = x1 ∙ x2 or z = x1x2)

OR gate: The output is 1 if at least one input is 1. E.g., the output z of an OR gate with inputs

x1 and x2 is 1 if and only if any of its inputs are 1, and the logic function can be expressed as

z = x1 ⋁ x2 (or z = x1 + x2)

NOT gate: It simply negates the input value. E.g., the output z of an NOT gate with inputs x is

1 if and only if its input is 0, and the logic function can be expressed as

z = x (or z = ¬x)

NAND gate: It is the negation of an AND gate, meaning the output is 1 when at least one input

is 0. E.g., the output z of a NAND gate with inputs x1 and x2 is 1 if and only if any of its inputs

are 0, and the logic function can be expressed as

z = x1 ⋀ x2 = x1 ⋁ x2

NOR gate: It is the negation of an OR gate, so the output is 1 only when both inputs are 0. E.g.,

the output z of a NOR gate with inputs x1 and x2 is 1 if and only if both of its inputs are 0, and the

logic function can be expressed as

z = x1 ⋁ x2 = x1 ⋀ x2

XOR gate: The output is 1 when the inputs have different values. E.g., the output z of an XOR

gate with inputs x1 and x2 is 1 if and only if its inputs are not simultaneously equal, and the logic

function can be expressed as

z = x1x2 ⋁ x1x2 = x1 ⨁ x2

2.1.2 Combinational and Sequential Logic Circuit

Logic circuits can be categorized as combinational (logic) circuits or sequential

(logic) circuits, depending on whether the logic circuits contain a feedback loop which is

a directed path from the output of some gate to an input of that gate [1].

A combinational (logic) circuit consists of an interconnected set of gates with no

feedback loops. A block diagram for combinational circuits is shown in Figure 2.2(a),

where the inputs and outputs are used to interact with the circuit and are also known as

the primary inputs (PIs) and primary outputs (POs), respectively. The output values of a

combinational circuit at a given time depend only on the present applied input values.

Hence, each output can be specified by a logic function of its input variables.

A sequential (logic) circuit consists of two sections: a combinational circuit part and

the feedback loops containing memory circuits. The output values of a sequential circuit

at a given time depend on the present applied input values and previous applied input

zx2x1

000

010

001

111

z
x1

x2

zx2x1

000

110

101

111

zx1
x2

z
x1

x2

zx

10

01

zx

zx2x1

100

110

101

011

zx2x1

100

010

001

011

zx1
x2

zx2x1

000

110

101

011

x2
zx1

AND OR NOT NAND NOR XOR

z = x1 ⋀ x2 z = x1 ⋁ x2 z = z = ⋀ z = ⋁
z = ⨁

7

values. The history information of previous applied inputs is summarized as the state of

the circuit and stored in memory. Figure 2.2(b) shows a block diagram for sequential

circuits, where the outputs of the memory as the feedback inputs feeding the present state

of the sequential circuit; and the inputs of the memory as the feedback outputs

summarizing the next state for the sequential circuit. A sequential circuit can be modeled

mathematically by a finite-state machine (FSM) or sequential machine, and each primary

output and state can be specified in the FSM according to the primary input variables.

Figure 2.2 Combinational and sequential logic circuits.

Sequential circuits can be further categorized as either synchronous circuits or

asynchronous circuits, depending on whether or not the memory portion of the circuit is

controlled (or clocked) at discrete instants of time (time-frame) by a synchronizing pulse

signal called a clock pulse or simply a clock.

A synchronous circuit is applied to a clock to the memory portion, and all feedback

loops are controlled synchronously by the clock. Figure 2.3(a) shows a block diagram for

synchronous circuits. The memory element in a feedback loop is a flip-flop (FF). Only at

a clock pulse can the FFs be stored with new information, i.e. at this time, the present

state can be updated, simultaneously with the next state being stored in the FFs.

An asynchronous circuit operates asynchronously, and its memory portion does not

need to be clocked by a synchronizing pulse signal. Figure 2.3(b) shows a block diagram

for asynchronous circuits. The memory element in each feedback loop is either a latch or

a time-delay element.

Figure 2.3 Synchronous and asynchronous sequential circuits.

(b) Sequential logic circuit(a) Combinational logic circuit

Combinational

Logic Circuit

PIs POs

Combinational

Logic Circuit

Memory
(circuit's state)

PIs POs

present

state

next

state

feedback loops

feedback
inputs

feedback
outputs

(a) Synchronous circuit

Combinational

Logic Circuit

PIs POs

present

state

next

state

feedback loops

FF

FF

Delay
(or Latch)

(b) Asynchronous circuit

Combinational

Logic Circuit

PIs POs

present

state

next

state

feedback loops

Delay
(or Latch)clock

8

2.1.3 Latch and Flip-flop

Latches are the fundamental element that stores binary information in logic circuits.

A latch stores one bit of a binary value as long as power is applied and holds its value

until it is updated by new input signals. The latch is built from logic gates to derive a

bistable circuit to keep the stable value by itself.

Figure 2.4 shows a basic bistable circuit that is built by two NOT gates in a feedback

loop, it is also known as two cross-coupled inverters. This circuit keeps two stable states

Q and Q, which means it can store a bit value. The value of the stable states can be

updated for storing a new value by additional gates to control the two cross-coupled

inverters.

Figure 2.4 Bistable circuit.

As shown in Figure 2.5(a), two additional OR gates control the two cross-coupled

inverters (it can also be considered as two cross-coupled NOR gates), and it can set (S) or

reset (R) the value of the Q and Q by input signals of the OR gates. This is known as an

SR-latch. The SR-latch can also be designed by adding AND gates to the two cross-

coupled inverters or with two cross-coupled NAND gates, as shown in Figure 2.5(b). The

SR latch can be added gates at inputs to provide an additional control input (C) that

determines when the state of the latch can be changed. This is known as a gated SR-latch

(with control input), as shown in Figure 2.5(c).

Figure 2.5 SR-latch.

The SR-latch is rarely used in practice because it makes the circuit difficult to

manage due to an indeterminate condition that may occur when all inputs are equal

Q

Q

Q

R

S

Q

R

S

 Q

Q

Q

R

S

C

S

R

Q

Q

S

R

Q

C

Q

S

R

C

(a)

(b)

(c)

SR-latch

SR-latch

SR-latch

9

simultaneously. But it holds significance as it serves as the basis for implementing other

latches and flip-flops. Figure 2.6 shows a D-latch implemented by using an SR-latch. The

D-latch is more commonly used than the SR-latch because it eliminates the indeterminate

state of the SR-latch by making the S and R of the SR-latch never equal simultaneously.

Although latches are valuable for storing binary information and designing asynchronous

sequential circuits, they are not suitable for synchronous sequential circuits due to the

lack of time control leading to an immediate output response, unlike flip-flops.

Figure 2.6 D-latch.

Flip-flops are used as memory elements in synchronous sequential circuits. Various

types of flip-flops, such as D flip-flop (D-FF), JK flip-flop (JK-FF), T flip-flop (T-FF),

are realized by configuring SR-latches or D-latches. The D-FF is a frequently used flip-

flop in synchronous circuits. Figure 2.7 shows a D-FF realized with two D-latches

connected in a master-slave configuration. Figure 2.7(a) shows a negative edge triggered

D-FF, where the circuit samples the D input during the high level of the clock (CLK) and

changes the Q output only at the negative edge of the CLK. In contrast, Figure 2.7(b)

shows a positive edge triggered D-FF, in which samples during the low level and changes

only at the positive edge.

Figure 2.7 D flip-flop.

2.1.4 Register

A latch or flip-flop memory element can store only one bit of binary value. By

organizing multiple of these memory elements, multi-bit storage can be implemented. A

basic multi-bit storage element is known as a register. Figure 2.8 shows a basic structure

of a typical register consisting of a set of n D-FFs. It is capable of storing n bits of binary

numbers, where each D-FF shares a common clock. Since the D-FFs have only one data

D

C

Q

D

C

Q

master slave

D-latch D-latch

CLK

D D

C

Q

D-FF

D

C

Q

D

C

Q

master slave

D-latch D-latch

CLK

D D

C

Q

D-FF

(a)

(b)

S

R

Q

C

D D

C

Q

D-latchSR-latch

10

input, whatever input we apply on the input side, at the same time as a clock transition

will be stored in the D-FF. Therefore, it is convenient to use the D-FF in the registers.

Figure 2.8 Register.

There is another type of register where it is possible to shift binary data between

adjacent flip-flops of the register. This type of register is known as the shift register. In a

shift register, the output of one flip-flop is connected to the input of the next flip-flop.

There are two ways to input data into a shift register: serial input and parallel input. The

serial input means that only one new bit of data is loaded into the register at one clock

pulse. A shift register like this has only one input. In contrast, the parallel input means

that all bits of data are loaded into the register at one clock pulse. Such a shift register has

multiple inputs. Similarly, there are two ways to output data from the shift register: serial

output and parallel output. Figure 2.9 shows the structure of an n-bit serial-input serial-

output shift register consisting of n D-FFs.

Figure 2.9 Shift register.

2.1.5 SRAM

Compared to registers that store multiple bits of binary data, if a large quantity of

binary data needs to be stored, one of the extremely optional storage devices is random-

access memory (RAM). A relatively fast RAM is static random-access memory (SRAM).

SRAM is composed of a large number of basic binary storage cells. A binary storage cell

is built from the basic storage element such as a bistable circuit (two cross-coupled

inverters) or a latch. A set of binary bits of data stored in a group of storage cells is known

as a word. A set of eight bits of data is referred to as a byte. The capacity of an SRAM is

usually expressed as the total number of bytes (or bits) it can store.

In an SRAM memory, in addition to the storage cell (SC), other circuits are needed

to control the reading and writing of SRAM, such as the decoder circuit used to select the

memory word specified by the address. Figure 2.10 shows an example of the schematic

CLK

D

C

Q

D-FF

D

C

Q

D-FF

D

C

Q

D-FF

D

C

Q

D-FF

0 1 3 n-1

CLK

D

C

Q

D-FF

D

C

Q

D-FF

D

C

Q

D-FF

D

C

Q

D-FF

0 1 3 n-1

Serial

input

Serial

output

11

diagram for an SRAM that can store 2kword×m-bit. Which shows 2k×m binary storage

cells and the decoder for selecting individual words.

Figure 2.10 Schematic diagram for an SRAM.

2.1.6 Transistor

Logic gates are realized by transistors, and today most integrated circuits are

implemented by metal oxide semiconductor field effect transistors (MOSFET, or simply

MOS) because larger integrations can be obtained with them [1]. The most basic

MOSFET-based logic families are p-channel MOSFET (PMOS) and n-channel MOSFET

(NMOS). Another dominant MOS-based logic family is the complementary MOSFET

(CMOS), which consists of a pair of complementary NMOS and PMOS transistors.

Figure 2.11(a) shows the circuit symbols for NMOS and PMOS transistors [2]. For

NMOS transistors, when the gate-to-source voltage Vgs is less (more) than the threshold

voltage Vth, the drain will be in a cut-off (turn-on) state to the source. For PMOS, it is in

a cut-off state when Vsg is less than Vth, and in a turn-on state when Vsg is more than Vth.

Figure 2.11(b) shows a COMS invertor.

Figure 2.11 Transistors.

k
-t

o
-2

k
d

e
c

o
d

e
r

Write/Read

Word 0

Word 1

Word 2

Word 2k

SC SC SC SC

SC SC SC SC

SC SC SC SC

SC SC SC SC

Bit 0 Bit 1 Bit 2 Bit m-1

Address

Data Outputs

Data Inputs

(a) NMOS and PMOS

PMOS:

G
D

S
+

-

G
S

D

+

-

NMOS:

(b) COMS invertor

Supply

Ground

A Z

12

2.2 Integrated Circuit Reliability

As IC technology continues to advance greatly, the integration levels of ICs have

increased dramatically. The increase in the number of integrated transistors has led to the

emergence of large-scale integration (LSI), very large-scale integration (VLSI), and

even ultra-large-scale integration (ULSI). The high circuit density of ICs improves their

performance and reduces their cost. On the other hand, high integration density requires

extremely fine manufacturing processes, where even minute variations in these processes

can easily lead to defects (A defect in an IC is a flaw or physical imperfection that may

result in a fault manifestation [3][4].), thus may resulting in a failure IC. Furthermore,

high-integration ICs, due to their tiny transistors and delicate interconnections, are prone

to damage from various factors during field use, such as aging or wear. These challenges

highlight the increasing importance of reliability in high-integration ICs.

The reliability of an IC varies with the failure rate over its life cycle [5]. One

common approach to analyzing the reliability of ICs, particularly LSI devices, is by using

the “bathtub curve” model. It is a widely adopted model used in reliability engineering to

describe the failure pattern of electronic components, including ICs. This model

characterizes the failure rate of ICs over time. As shown in Figure 2.12, the bathtub curve

consists of three phases: the early failure phase, the random failure phase, and the wear-

out failure phase [5].

Figure 2.12 Bathtub curve for IC reliability.

Early Failure Phase: In this phase, the failure rate of ICs is relatively high during the

initial period of operation. This phase is often associated with manufacturing defects or

issues arising from the “infant mortality” phenomenon, where components fail early due

to latent defects introduced during the manufacturing process.

Random Failure Phase: After the early failure phase, the ICs enter a phase where the

failure rate remains relatively low and constant over an extended period. This phase

F
a

il
u

re
 R

a
te

Time

Early failure phase Wear-out failure phaseRandom failure phase

Manufacturing test Field test and field monitoring

(Normal operating life)(Infant mortality) (End of life)

13

represents the normal operating life of ICs, where failures occur randomly due to various

factors such as external stresses, electrical overstress, or component wear-out.

Wear-out Failure Phase: Over time, as ICs age and accumulate usage, they enter the

wear-out failure phase. In this phase, the failure rate starts to increase, indicating the

degradation of components and a higher likelihood of failures. Wear-out failures are

typically associated with aging effects, such as electromigration, oxide breakdown, or

material fatigue.

By understanding the bathtub curve model and its application to IC reliability,

researchers and engineers can assess and improve the reliability of ICs. For this purpose,

one of the important roles involves the IC test technique. By employing effective IC test

techniques to detect and minimize the defects causing failures, the normal operating life

of ICs can be extended. As shown in Figure 2.12, before an IC is shipped to the market,

in early failure phase conducting high quality manufacturing test can eliminate the

defective IC or that with a high potential for failure. By employing strategies such as field

test and field monitoring to report and predict the random failures and wear-out failures,

the overall reliability of shipped ICs can be enhanced.

2.3 Integrated Circuit Test

2.3.1 Purpose of Test

An IC test is a procedural examination aimed at detecting and/or localizing faults

resulting from defects (or design errors) within ICs [1]. It can be carried out at various

stages in the lifecycle of an IC chip to ensure reliability, including during the design

(involving design verification), manufacturing (involving manufacturing test), and field

operation (involving field test or field monitoring) stages [4]. This Dissertation mainly

focuses on the test during the manufacturing stage and field operation stage.

Depending on the specific purpose of the testing, the tests may be categorized as

fault detection and fault location (also known as fault diagnosis) [1]. The purpose of fault

detection is to determine whether an IC is defective (faulty) or free of faults (fault-free),

while the fault diagnosis goes further by pinpointing the location and type of the fault,

along with other pertinent information necessary for resolving the diagnostic issue. The

fault detection is prioritized as the initial step during fault diagnosis.

In the manufacturing test, fault detection is a mandatory step, because if any fault is

present, the entire chip must be discarded and cannot be shipped to the market. At this

stage, fault diagnosis is usually not necessary; it can of course be carried out selectively

14

for the purpose of improving the manufacturing process by identifying the location, type,

and cause of faults present in the defective chips.

In the field test (or field monitoring), if it is established that a fault exists by fault

detection, typically, fault diagnosis may be subsequently employed to identify and isolate

the specific faulty node or component for necessary repairs.

2.3.2 Test Principle

The basic scheme of IC testing is shown in Figure 2.13 [3][4][6]. A set or a sequence

of input patterns is applied to the inputs of the circuit under test (CUT or DUT: device

under test) that produce output responses at the outputs of the CUT, and then the output

responses are compared with the expected (correct) responses to determine whether the

CUT is fault-free (good) or faulty. It is considered fault-free and passes the test if the CUT

produces the correct output responses (matched with the expected ones), otherwise, is

faulty and fails the test.

Figure 2.13 Basic scheme of IC testing.

Where an input pattern utilized for testing purposes is commonly referred to as a test

pattern, also known as test stimuli or test vector. Typically, a test for a CUT encompasses

multiple test patterns, which are collectively referred to as a test set or test sequence. If

the test patterns must be applied in a specific order, the term “test sequence” is used to

denote a series of test patterns. Test patterns, along with the corresponding output

responses, are occasionally referred to as test data [1].

In the design verification, the test patterns and the expected responses are decided

by the designer according to the requirements specified in the design specifications.

In the manufacturing and field tests, the expected responses can be obtained from

circuit simulation of the fault-free (design error-free) circuit that has been verified by the

design verification. The input patterns during the design verification process also can be

used as test patterns for the manufacturing test and field test. But, typically, to find

efficient test patterns that detect all faults considered for that circuit, the test patterns are

decided by a process known as test generation for the specific fault model.

Circuit Under Test

(CUT)

Comparator

match

mismatch

Test Patterns Output Responses

Expected Responses

Good circuit

(Pass)

Faulty circuit

(Fail)

------------11

------------00

------------01

------------01

------------10

------------11

------------01

------------10
------------00

15

2.4 Fault Models

A chip may be produced various types of defects. Since the complexity and diversity

of the defects, it is difficult to generate test patterns for the real defects. To generate test

patterns more easily, it is necessary to build mathematical models that can accurately

describe the behavior of the real defects and that must be computationally efficient in

simulation environments. A mathematical model like this is known as the fault model.

There are many fault models reflecting various defects. The most popular and

common fault models, the stuck-at fault model, the bridging fault model, and the delay

fault model, will be introduced in the following subsections.

2.4.1 Stuck-at Fault Model

A stuck-at fault describes a faulty behavior of the defect causing the value of a signal

on lines (including PIs, POs, and interconnects) in a logic circuit to be stuck at a constant,

either a logic 1 or a logic 0, referred to as stuck-at-1 (sa1) or stuck-at-0 (sa0), respectively.

A defect such as this could be a short circuit between the signal wire and the power supply

or ground, or it could be something else. Figure 2.14 shows an example of a stuck fault.

Figure 2.14(a) shows a stuck-at-1 fault on line c, which is fixed to a value of 1 by a defect

that could be a short to the power supply, and Figure 2.14(b) shows a stuck-at-0 fault on

line d, which is fixed to a value of 0 by a defect that could be a short to ground.

Figure 2.14 Example of stuck-at fault model.

If only one fault exists in a logic circuit, it is referred to as a single fault. If two or

more faults are present at the same time, then the set of faults is referred to as a multiple

fault. For a circuit with n signal lines and a given fault model with k different types of

faults (for the stuck-at model k=2: sa1 and sa0), there may be at most k×n single faults;

and fault collapsing techniques can help reduce these numbers [06]. For multiple faults,

the number of possible faults increases sharply up to (k+1)n-k×n-1. Testing for multiple

faults is difficult due to too many faults to be assumed; however, testing for single fault

models can be utilized to test multi-fault models; therefore, single fault models are

typically used for test generation [4].

e

a

b

c
d

x
sa1~

(a) stuck-at 1 fault

a short to supply

e

a

b

c
d

(b) stuck-at 0 fault

a short to ground

x
sa0~

16

2.4.2 Bridging Fault Model

A bridging fault reflects the behavior of a defect causing that the value of a signal

line is dominated by the value of another signal line. A typical type of such defect is a

short circuit in a certain situation between two signal lines, as shown in Figure 2.15(a).

Depending on the short circuit situation, the values of the bridged signal lines are

dominated in different ways, which leads to several different types of bridging faults.

Generally, the values of shorted signal lines are dominated by either logic value 0 or 1 [1].

If it is 0-dominant, it is referred to as the wired-AND bridging fault model (AND-bridge),

as shown in Figure 2.15(b); If it is 1-dominant, it is referred to as the wired-OR bridging

fault (OR-bridge) model, as shown in Figure 2.15(c) [6]. These two types of bridging

faults are the most frequently used in practice.

Figure 2.15 Bridging fault: wired-AND/wired-OR bridging fault models.

Other bridging fault models are the dominant bridging fault model, and the

dominant-AND/dominant-OR bridging fault model. The dominant bridging fault model

was developed to more accurately reflect the behavior of certain short circuits in CMOS

circuits, in which case one line is assumed to act as the driver, dominating the logic values

on the two short lines [4][6]. In certain cases, the dominant bridge fault model fails to

accurately reflect the behavior of a resistive short. To address this limitation, the

dominant-AND/dominant-OR model has been proposed to take into account the observed

behavior of resistive shorts in specific CMOS circuits, where one driver exerts dominance

over the logic value of the shorted lines, but only under certain logic conditions [4].

2.4.3 Delay Fault Model

A delay fault refers to a type of fault or error that occurs in a circuit when certain

signal delays exceed the specified time limits. In logic circuits, signals are expected to

propagate through various logic gates and interconnects within a specific time frame. If

the propagation delay of a signal exceeds the predetermined threshold, it can lead to

functional errors or failures in the circuit. Delay faults can arise due to various factors,

such as design errors (e.g., aggressive place and route), process variations (e.g., gate

threshold variations), manufacturing defects (e.g., resistive bridges/opens), environments

(e.g., severe temperature fluctuations), or field aging phenomenon (e.g., hot-carrier

(a) Bridging fault

a

b

x

~

x

a’

b’

a

b

a’

b’x

x

(b) wired-AND bridging fault

a

b

a’

b’

x

x

(c) wired-OR bridging fault

17

injection, bias temperature instability). These faults can manifest in different ways,

including hold time violations, setup time violations, clock skew, or interconnect delays.

Depending on the ways to model delay faults, there are several typical delay fault

models considered, which are the transition fault model, gate-delay fault model, line-

delay fault model, segment-delay fault model, and path-delay fault model [7]. Transition,

gate, and line delay models are utilized to characterize delay defects that concentrate at

individual gates. Conversely, path and segment delay models are employed to address

delay defects that are dispersed across multiple gates [7]. These models are specifically

designed to capture and represent the various types of delay defects in the timing behavior

of integrated circuits.

In these models, it is assumed that in a fault-free circuit, each gate, along with its

interconnects on the input and output pins, possesses a predefined nominal rise (fall) delay

from each input to the output pin. When delay defects increase the nominal rise (fall)

delay, it results in a slow-to-rise (slow-to-fall) fault [7], as depicted in Figure 2.16. This

fault implies that the transition from 0 to 1 (or 1 to 0) will not reach any output within the

specified time limits and result in faulty circuit behavior.

Figure 2.16 Delay fauls: slow-to-rise (slow-to-fall) faults.

2.5 Test Generation

To generate effective test patterns to identify the various potential fault models in

the circuit, a process referred to as test generation is to be done [3]. Figure 2.17 shows a

procedure for test generation. Once a circuit has successfully passed design verification,

the circuit is considered to be a design error-free (fault-free). In test generation, first, a

logic simulation is performed on the fault-free circuit to generate candidate test patterns

and their expected responses. Then, fault simulation is carried out by injecting fault

models into the fault-free circuit to filter out invalid test patterns and remove already

detected faults. Finally, the quality of selected valid test patterns is evaluated using fault

coverage. If the evaluation results are adequate, the process ends. Otherwise, the process

continues by adding new test patterns through logic simulation until the desired fault

coverage is achieved. The details about the logic simulation, fault simulation, and fault

coverage in the test generation procedure are as follows.

e

a

b

c

d

x
delayed

slow-to-fall

normal

slow-to-rise

normal

time limit

18

Figure 2.17 Test generation procedure.

2.5.1 Logic Simulation

Logic simulation is a process that uses test vectors to simulate the behavior of a logic

circuit. It is typically performed during design verification to ensure that the circuit is an

error-free design. After the design verification, it is also employed for fault-free circuits

in order to generate candidate test patterns in the test generation process. In this case, it

is typically performed in a test generator. In the test generator, the fault-free circuit is

loaded into the logic simulator while input patterns, that may be from a random pattern

generator, are fed to the fault-free circuit to generate the output responses. These input

patterns and the corresponding output responses are used as candidate test patterns and

expected responses, which will be filtered in the fault simulation process to detect specific

fault models.

2.5.2 Fault Simulation

Fault simulation is an important step in the test generation process as it evaluates

the ability of the test patterns to detect specific fault models. In this phase, various faults

in a fault list, such as stuck-at faults, bridging faults, or delay faults, are injected into the

fault-free circuit. The circuit is then simulated with these injected faults. In the simulation,

for each applied test vector, the output response is compared with the expected response.

If the comparison result is a mismatch, the test vector is considered to be able to detect

the injected fault, and the detected fault will be removed from the fault list; otherwise, it

means that the test vector cannot detect the injected fault, and the invalid test vector will

be deleted from the test patterns. After all the test vectors in the test patterns have been

applied, a quality evaluation for these test patterns will be performed by calculating the

fault coverage.

Fault-free

circuit

net-list

Fault coverage

evaluation

Logic simulation

for fault-free circuit
Expected

responses

Test

patterns

Fault simulation for

fault-injected circuit

Adequate?

Yes

No

End

Remove detected faultsFault

list

Delete invalid ones

Test Generator

Fault Simulator

19

2.5.3 Fault Coverage

Fault coverage is used to evaluate the effectiveness of the generated test patterns in

detecting faults for high test quality. As defined in the formula below, it evaluates the

quality of the test patterns by quantifying the ratio of the number of detected faults to the

total number of faults in the fault list.

Fault coverage=
Number of detected faults

Total number of faults

Higher fault coverage indicates that the set of test patterns is more effective and able

to detect more faults specified in the fault list. During the test generation process, if the

result of the fault coverage evaluation for the applied test patterns to the fault simulation

is unsatisfactory, new test vectors should be added through the test generator until the

fault coverage after the fault simulation reaches a satisfactory value.

However, sometimes, it is very hard to obtain high fault coverage for some circuits,

especially for very highly integrated chips, because some faults in the circuit are difficult

to detect or even undetectable using conventional tests. For this reason, a technique called

design-for-testability has been proposed for achieving high test quality.

2.6 Design for Testability

As circuit integration increases, testing becomes increasingly difficult. Design for

testability (DFT) is a crucial aspect of modern circuit design that focuses on making

circuits easier to test. By incorporating specific techniques and hardware into the design,

DFT enables efficient control and observation of the internal state of the circuit from

external access points. This ensures that products are thoroughly and accurately tested,

guaranteeing their reliability and performance. This section will discuss three popular

DFT techniques: scan design, logic built-in self-test, and test point insertion.

2.6.1 Scan Design

Scan design is a widely used DFT technique that enhances testability by introducing

scan chains into a circuit to obtain the controllability and observability of the internal

state in the circuit. Typically, a scan chain is a shift register formed by connecting certain

selected flip-flops in a circuit in a linear fashion, allowing for the insertion and extraction

of test data during the testing process. These flip-flops that are selected for the scan design

are called scan flip-flops (SFFs) or scan cells. The number of these SFFs in a scan chain

is the length of this scan chain. By incorporating scan design, the internal state of the

20

circuit can be efficiently controlled, enabling the application of various test patterns and

the observation of circuit responses. The scan chain facilitates the shift of test data in and

out of the circuit, simplifying the testing procedure and improving fault coverage.

Figure 2.18 shows a schematic for a scan design [4]. A test control signal (TC) added

to all flip-flops in the scan chain controls the three operation modes of the scan chain:

normal mode, shift mode, and capture mode. In normal mode, all flip-flops operate in the

normal functional configuration of the circuit. In shift mode, any desired test data can be

set to all the flip-flops of the scan chain by shifting from the scan-in. These test data will

be applied to the circuit in the normal mode. In capture mode, the test responses stored in

the flip-flops can be observed from the scan-out by shifting.

Figure 2.18 Schematic for a scan design.

There is usually more than one implementation way to convert the selected flip-flop

in a circuit into a scan cell SFF. The most widely used scan cell is the Muxed-D scan cell

[4], as shown in Figure 2.19. The Muxed-D scan cell is implemented by using a D flip-

flop and a multiplexer. A scan enable input (SE) on the multiplexer is used to select the

data input (DI) and scan input (SI).

Figure 2.19 Example for implementing a SFF: Muxed-D scan cell.

2.6.2 Logic Built-In Self-Test

LBIST (Logic BIST: logic built-in self-test) is another powerful DFT technique that

incorporates self-test circuitry directly into the design. This self-test circuitry generates

Combinational

Logic Circuit

 PIs POs

SFF

SFF

SFF

TC

Scan-In

Scan-out

D

C

Q

D-FF

Scan-outDI

SI

SE

Clock

MUX Data-out

21

and applies test patterns to the circuit, autonomously detecting and identifying faults or

errors. LBIST eliminates the need for external test equipment, making the testing process

more autonomous and efficient. By embedding self-test circuitry, LBIST enables

comprehensive testing of the circuit’s internal logic and facilitates fault diagnosis and

localization.

Figure 2.20 illustrates the basic architecture of LBIST [4][6]. Three key components

are designed within the circuit for implementing self-testing. One of these components is

the test pattern generator (TPG), which automatically generates test patterns to be applied

to the inputs of the circuit under test (CUT). These test patterns stimulate the CUT and

help detect potential faults. The output response analyzer (ORA) is responsible for

compacting the output responses of the CUT into a signature through signature analysis

and comparing it with the expected signature. Additionally, the logic BIST controller (or

test controller) generates specific test control signals to coordinate the BIST operation

among the TPG, CUT, and ORA. Once the BIST operation is completed, the ORA

provides a pass/fail indication, indicating whether the circuit has passed or failed the test.

Figure 2.20 Basic architecture of LBIST.

In LBIST applications, TPGs are commonly implemented using linear feedback

shift registers (LFSRs). Figure 2.21 illustrates the structure of an n-stage modular LFSR

typically used for generating test patterns or test sequences. It consists of n D flip-flops

and a selected number of XOR gates. It can efficiently generate sequences with good

randomness (pseudo-random sequences) at a relatively small area cost.

Figure 2.21 n-stage modular LFSR.

Circuit Under Test

(CUT)

Output Response

Analyzer (ORA)

Test Pattern

Generator (TPG)

BIST Controller

(Test Controller)

PIs
POs

Past/Fail

Integrated Circuit

Test Patterns to Inputs of CUT

D-FF D-FF D-FF D-FF

0 1 2 n-1

22

In ORAs, signature analysis schemes are often employed to compress the output

responses. These schemes typically use multiple-input signature registers (MISRs).

Figure 2.22 shows the structure of an n-stage MISR. This MISR compresses multiple

output sequences by simultaneously feeding them into extra XOR gates added to the

modular LFSR.

Figure 2.22 n-stage MISR.

2.6.3 Test Point Insertion

Test Point Insertion (TPI) is a DFT technique aimed at enhancing observability and

controllability within the circuit. It is typically used to improve the detection probability

of RP-resistant (random-patterns resistant) faults so they can be detected during pseudo-

random testing, to increase the circuit’s fault coverage to a desired level [4]. TPI involves

strategically inserting additional circuit nodes, called test points, including control points

and observation points, throughout the design. These test points provide access to internal

signals, allowing for the monitoring and control of specific areas within the circuit during

testing. By carefully selecting and placing test points, engineers can target critical areas

or potential fault sites, improving fault detection and enabling more effective debugging

and characterization of the circuit.

Figure 2.23 shows two typical types of test points [4]: a test point with a multiplexer

and a test point with AND-OR gates. Where the control point (CP) can be connected to a

primary input, an existing scan cell output, or a dedicated scan cell output; the observation

point (OP) can be connected to a primary output through an additional multiplexer, an

existing scan cell input, or a dedicated scan cell input; and a test control signal (TC)

controls the test mode and normal operation mode of the test point.

Figure 2.23 Two typical types of test points.

Output Responses from Outputs of CUT

D-FF D-FF D-FF D-FF

0 1 2 n-1

CP

OP

TC

CP

OP

TC

(a) Test point with a multiplexer (b) Test point with AND–OR gates

23

Part II: Test Point Insertion for Multi-Cycle

Power-On Self-Test

24

With the rapid evolution of technologies in developing automotive systems toward

fully autonomous vehicles, various complex integrated circuits (ICs) are embedded in a

car. The functional safety of the automotive system becomes a fundamental requirement

as indexed by the ISO26262 standard [8].

Power-on Self-Test (POST) is the most common test solution to ensure the safety of

a system. It tests the safety-critical components during the system’s startup before running

any functional operations. It is thus helpful to detect any potential faults inside the

components early to avoid a system failure. For testing automotive ICs, The POST needs

to meet several constraints as follows.

• Indispensable test quality: The ISO26262 standard imposes at least 90% latent fault

metric to meet the most stringent automotive safety integrity level (ASIL D) for

avoiding a random hardware failure (e.g., stuck-at faults) during the lifetime of ICs

[8];

• Limited test application time (TAT): test must be complete during the power-on reset

at the engine startup (e.g., 10∼50ms);

• Low power: the consideration of power consumption during the test is helpful to

avoid false tests under the delay fault model [9];

• Low silicon overhead: suppress the increase of the Design for Test (DFT) hardware

due to the ever-increasing complexity of ICs.

The simple way to run the POST is to utilize the logic built-in self-test (LBIST)

which is the general test infrastructure for the manufacturing test. An LBIST is typically

a scan-based DFT scheme running test-per-scan testing, where each test (capture

operation) is executed after a serial scan-shift of pseudo-random patterns/responses. It

usually requires a large test volume to attain a reasonable test coverage due to the lower

quality of the pseudo-random patterns generated by the on-chip test pattern generator

(TPG). Consequently, the TAT increases under a usually slow scan-shift clock for scan-

shifting the test patterns.

In the past, many sophisticated solutions have been introduced to reduce the test

volume of the standard LBIST, such as scan structure optimization [10][11], the weighted

random pattern [12][13], random vector perturbing [14], Bit-flipping [15], and reseeding

[16][17][18]. Test point insertion (TPI) technology improves the testability of CUT by

inserting test logic into the CUT to deal with the detection of random pattern resistant

(RPR) faults [19][20][21]. Other solutions focus on improving the test scheme of LBIST

to enable the test-per-clock testing [22][23], such as the shadow flip-flops insertion [24],

and the Tri-Modal Scan test scheme [25] with reconfigurable scan cell design. Recently

25

the deterministic test compression technology is also applied to the automotive ICs to run

a POST or an in-system test [26][42]. The deterministic compression test requires a

modified BIST structure to allow applying the external test patterns generated by ATPG

or continuous reseeding for high fault coverage. In this work, we focused on improving

the test quality of an on-chip TPG-based LBIST by introducing a multi-cycle test

described later to make the standard LBIST comply with the ISO26262 standard.

Multi-cycle test applying more than one clock to run many times function operation

after the scan-shift operation is a smart way to complement the quality of the test patterns

(scan-in patterns) for test compaction [27][28][29], low-power testing [30][31][32], and

logic diagnosis [33]. In a multi-cycle test, the response of CUT at each capture cycle is

applied to the CUT in parallel as a capture pattern at the subsequent capture cycle. This

feature is helpful to reduce the volume of scan-in patterns for attaining a target test

coverage when the capture patterns can detect any additional faults that are missed by the

root scan-in pattern. The multi-cycle test has the behavior to take the CUT closer to its

functional operation conditions that can generate functional vectors with lower power

consumption, which are very helpful to at-speed testing for delay fault detection [31][32].

It is also easy to implement the multi-cycle test w/o the extra overhead in terms of

software (e.g., modified ATPG for deterministic pattern generation) and hardware (e.g.,

reseeding logic & memory). Therefore, the multi-cycle test is expected to be a promising

test scheme to a trade-off among the test coverage, TAT, silicon area, and low power for

POST.

A multi-cycle test may not always be effective for test reduction when the functional

sequences generated by the CUT are not helpful to fault detection. Appropriate DFTs that

can complement the value of the functional sequences are necessary to enhance the ability

of the multi-cycle test to test reduction. Many DFT approaches to improve delay fault

detection were presented in the past. In [34], the authors proposed a new scan cell named

Transition-Launch Flip-Flop to complement the test vectors by modifying the value of

partial FFs after the launch cycle in a two-cycle broadside test. In [35] and [36], the author

expanded the approach of [34] to multi-cycle tests and proposed the DFT approaches to

enhance the ability of the capture states to delay fault detection by holding [35] or

reversing [36] the value of all FFs at the appropriate capture cycles. These DFT

approaches considered the condition/requirement of the hard-to-detect delay faults in the

multi-cycle test.

In our previous works [37] [40], we have discussed the fault masking problem and

the fault detection degradation problem (FDD) that would obstruct the effect of multi-

26

cycle tests to detect stuck-at faults. It is necessary to solve the problems to reduce the test

application time of POST under the indispensable test quality specified in the ISO26262

standard. The main difference between the existing DFT approaches and our works is to

solve the Fault Masking and FDD problems for the stuck-at fault detection under the

multi-cycle LBIST.

The fault-masking problem denotes that the fault effects excited at the intermediate

capture cycles might be masked before the effects are propagated to the final capture

cycle for observation. To address this issue, we proposed a novel scan cell named the

fault-detection-strengthened FF (FDS-FF) that directly observes and keeps the value of

a faulty effect as it arrives at the FF during the capture operations [37][38][39].

The FDD denotes that the capability of capture patterns to detect additional stuck-at

faults degrades with the increase of the number of capture cycles [40]. In [41], we have

proposed a control point insertion (CPI) method to overcome the FDD by inserting

control logic into scan FFs that modifies the value captured into the FFs during

intermediate cycles, named the FF-CPI. While the basic idea is similar to the DFT

proposed in [35][36], our approach targeted controlling partial FFs but not the whole scan

chain. We also proposed an approximate evaluation approach to identify CPs by

analyzing the circuit structure without fault simulation. In general, the fault-simulation-

based evaluation in [35][36] needs more processing time than our method. Moreover, in

this study, we expand the FF-CPI approach of [41] to control the internal state of the

combinational logic for stuck-at fault detection, which is different from the existing DFT

approaches that will be described in Chapter 5.

This part consolidates the FDS-FF insertion approach denoted by OP (observation

point) insertion and the FF-CPI approach into a complete DFT technique referred to as

the test point insertion (TPI). Unlike the conventional TPIs which detect the random

pattern resistant faults, our TPI focus on addressing the Fault Masking problem and FDD

problem under a multi-cycle LBIST scheme to reduce the volume of scan-in patterns to

meet the indispensable test quality specified by ISO26262.

The main contributions of this part are as follows.

(1) We clarify the mechanism of Fault Masking and FDD by analyzing the stuck-at

fault detection model in the multi-cycle BIST scheme.

(2) We expand the FF-CPI approach to control the internal state of combinational

logic by a newly proposed control logic circuit named Self-flipping CP to

improve the testability for stuck-at fault detection under multi-cycle tests.

27

(3) We propose a new metric to evaluate the effect of candidate signal lines for CP

insertion under the multi-cycle BIST scheme.

(4) We introduce an improved probabilistic cost function to estimate the effect of CP

and OP insertion.

(5) We introduce a consistent procedure to identify a user-specified number of CPs

and OPs to achieve the most scan-in pattern reduction for attaining a target test

coverage in the multi-cycle BIST scheme.

(6) We evaluate the effectiveness of the proposed TPI for shortening the test

application time based on the experimental results of ISCAS’89 and ITC’99

benchmark circuits under the single stuck-at fault model.

The remainder of this part is organized as follows. Chapter 3 introduces the basic

concept of test-per-scan BIST, the multi-cycle test, and its issues. Chapter 4 describes the

fault detection model under multi-cycle BIST. Chapter 5 presents the TPI approach for

multi-cycle BIST, shows the experimental results on benchmark circuits, and concludes

the part.

28

Chapter 3

3. Multi-Cycle Test Scheme

In this chapter, we first review the characteristic of scan BIST and multi-cycle BIST

and discuss the problems of multi-cycle tests.

3.1 Scan BIST

In a traditional test-per-scan BIST, pseudo-random vectors generated by the on-chip

TPG are serially loaded into the scan chains driven by scan-shift clocks, known as scan

operation. When all the scan registers are filled up, a complete scan-in pattern is latched

to the inputs of the circuit. The circuit is then switched to the functional operation that

generates the corresponding functional response at the outputs of the circuit. The FFs will

be updated with the functional responses of the circuit when the trigger edge of the

functional clock arrives, known as the capture operation. The captured functional

response will be unloaded for fault detection as loading the next scan-in pattern. It is easy

to observe that test is conducted only once by applying a complete scan-in pattern. Almost

all test application time is consumed in the serial scan shift operation for test data delivery.

3.2 Multi-cycle BIST

The multi-cycle test applies more than one functional clock to run many capture

operations for every single scan-in pattern. In Figure 3.1, we show the operations during

the multi-cycle test in the time-frame expansion of CUT. Let’s define a multi-cycle test

by <si, vi, cij, oi>, where si denotes a scan-in pattern; vi denotes a primary input vector; cij

denotes the responses of CUT captured into the scan chains represented by the capture

patterns at the jth functional clock; and oi denotes a scan-out pattern which is the response

of the combinational circuit when cij is applied at the last capture. After a scan-in pattern

si is loaded into the scan chain in serial, the corresponding response ci1 is generated at the

outputs of combinational logic (FFs drawn in dashed line) and captured into the FFs in

parallel by the functional clock T1. Then, ci1 is used as test stimuli and latched to the

circuit to generate a new response ci2, and ci2 is applied and generates the corresponding

response ci3 in parallel until the final capture clock is applied. The response captured at

the final capture oi is unloaded for observation. It should be noted that the state of primary

29

inputs vi will be kept constant and the primary outputs in the intermediate capture cycle

are considered unobservable during the capture operation.

Figure 3.1 Test operations in multi-cycle BIST.

From Figure 3.1, it can be observed that conducting a multi-cycle test for each scan-

in pattern <si, vi> could provide more chances to detect additional faults through the

functional capture patterns cij. Therefore, it has promising potential to reduce the number

of scan-in patterns for attaining a target test coverage that contributes to shortening the

test application time due to fewer scan-shift operations. In addition, since the time of

capture operation is negligible compared to the serial scan-shift operation, the reduction

of the total test application time for POST is expectable.

3.3 The Problems of Multi-cycle BIST

In our earlier works, we have raised two issues that would obstruct the effect of

multi-cycle test to reduce the scan-in patterns for shortening the TAT of POST, called the

Fault Masking [37][38][39] and Fault Detection Degradation of Capture Pattern [40][41],

respectively. The following gives a brief overview of these problems for this study.

3.3.1 Fault Masking

Fault Masking denotes that the fault effects excited at the intermediate capture

cycles by capture patterns might disappear before these effects are propagated to the final

capture cycle for observation. Suppose that a fault f is excited at the first capture cycle by

FF

FF

FF

FF

scan-in

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

scan

out

Primary inputs
Primary outputs

Combinational

logic @T1

Combinational

logic @T2

Combinational

logic @T3

Combinational

logic @T4

Scan Enable

Capture Mode

Multiple Functional Clocks M=4

clocks for si loading Latch
T1

Scan shift Mode Scan shift mode

Scan shift clocks

T2 T3 T4

ci1si

oi

ci2 ci3 ci4

clocks for si+1 loading and oi unloading

si

vi

30

the scan-in pattern. To detect f, its faulty value has to be propagated through all M-1

capture cycles until the final capture cycle is applied. When the CUT has a deep

combinational logic or the capture operation runs in a large cycle number, the time-

expanded propagation path of the faulty value would become too long to be activated for

detection, and the faulty value might be masked at certain logic due to the un-controllable

logic state during the capture operation. Severe fault-masking would decrease the test

quality of the scan-in patterns and capture patterns, and finally, obstruct the effect of the

multi-cycle test for reducing the scan-in patterns.

3.3.2 Fault Detection Degradation Problem (FDD)

FDD means the capability of capture patterns to detect more additional stuck-at

faults degrades as increasing the number of capture cycles. This is based on the

observation that multi-cycle tests can take the CUT closer to its functional operation

conditions with small internal transitions when increasing the capture cycles [31]. The

functional operation would consequently cause the states of the large number of FFs to

become constant when a number of capture cycles are applied. Since the value of FFs is

reused as test stimuli at the subsequent capture cycles, the large number of FFs with

constant values would cause the loss of randomness property of the capture patterns that

obstructs the detection of additional faults.

31

Chapter 4

4. Fault Detection Model in Multi-Cycle BIST

In this chapter, we give a detailed analysis of the stuck-at fault detection model in a

multi-cycle BIST scheme to elucidate the mechanism of Fault Masking and FDD as

follows.

For a stuck-at fault Fi, its faulty effect will always exist at each capture cycle during

the capture operation, and we express it by fij in the time-expanded circuit as shown in

Figure 4.1. The faulty effect of Fi at each capture cycle might be excited by the inputs of

CUT. We use Peij to denote the probability to excite fault Fi at the jth capture cycle. To

detect Fi, the excited faulty value of Fi at the jth capture cycle (fij) must be propagated to

the scan FFs for observing after the final capture, and we denote the propagation

probability as Ppij.

Figure 4.1 Single stuck-at fault detection in time-expanded circuit.

In LBIST, Peij and Ppij of a stuck-at fault Fi/s can be estimated by computing the 𝑠¬

controllability (𝐶𝑖𝑗/𝑠¬) and the observability (𝑂𝑖𝑗) of signal line i through the probabilistic

random pattern testability measure such as COP (controllability observability procedure).

Hence, the detection probability of Fi/s at the jth capture cycle denoted by Pdij/s can be

expressed by Pdij/s=𝐶𝑖𝑗/𝑠¬×𝑂𝑖𝑗. For a multi-cycle test with M capture cycles, the fault Fi/s

would have M times opportunity to be excited by the capture patterns ci1~ciM, and Fi/s will

be detected out of once the fault is excited and propagated to the outputs. Hence, the

detection probability of Fi/s denoted by Pdi/s in a multi-cycle test is the complementary

FF

FF

FF

FF

scan-in

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

scan

out

Primary

inputs

Primary

outputs

Combinational

logic @T1

Combinational

logic @T2

Combinational

logic @T3

Combinational

logic @T4

ci1si
ci2 ci3 ci4

si

fi1

×

fi2

×

fi3

×

fi4

×

Pdi1= Pei1*Ppi1 Pdi2= Pei2*Ppi2 Pdi3= Pei3*Ppi3 Pdi4= Pei4*Ppi4

Pei1

Fi

: Fault excitation : Faulty value propagation

oi

vi

32

probability of the case that Fi/s cannot be excited and propagated for detection at all

capture cycles, which can be expressed by:

𝑃𝑑𝑖/𝑠 = 1 −∏(1 − 𝐶𝑖𝑗/𝑠¬ × 𝑂𝑖𝑗)

𝑀

𝑗=1

 (4.1)

To calculate the controllability and the observability of signal lines at each capture

cycle, we transform the CUT to M cycles time-frame expansion combinational circuit.

We initialize the 0/1 controllability (𝐶𝑖1/0 and 𝐶𝑖1/1) of PI (primary input) and PPI

(pseudo-primary input: FF) at the first capture cycle to 0.5/0.5, then, calculate the value

of 𝐶𝑖𝑗/0 and 𝐶𝑖𝑗/1 for each gate at each time-frame. The observability of signal line at

each time-frame is calculated starting from the PO (primary output) and PPO (pseudo-

primary output) at the last capture cycle with initial value of 1.0, tracing back to the PI

and PPI until the first capture cycle.

Compared to the traditional scan test with a single capture, the multi-cycle test

shows the potential to improve the probability of fault detection for every single scan-in

pattern followed by multiple capture patterns. However, the fault detection in the multi-

cycle test depends on the controllability and observability of signal lines in the time-

expanded circuit, which is generally deteriorating, as the number of capture cycles

increases.

For demonstration, we conducted preliminary experiments on ISCAS89 and ITC99

benchmark circuits to evaluate the average 1-controllability and the observability of

signal lines at each capture cycle. Figure 4.2 shows the results. In Figure 4.2(a), it can be

observed that ITC99 circuits show higher 1-controllability, which implies the internal

states of these circuits are easy to be 1, whereas ISCAS89 circuits likely trend to be 0.

Figure 4.2(b) shows the standard deviation of 1-controllability of signal lines at each

capture cycle corresponding to the results of Figure 4.2(a), to demonstrate the impact of

increasing capture cycles on the controllability. The results show that the standard

deviation of 1-controllability becomes higher as the capture cycles increase, which

implies the controllability of more signal lines is biasing toward either 0 or 1; in other

words, the value of more signal lines in a large capture cycle would be most likely fixed

at 0 or 1 during the tests. For a signal line with stuck-at fault, higher 0-controllability (0-

bias) is helpful to excite the s-1 fault, whereas exciting the s-0 fault becomes difficult.

Moreover, the biased controllability of signal lines in a time frame would also affect the

path sensitization for propagating the excited faulty values to the FFs in the current time

frame. We insist on it as the root cause of FDD observed in our previous works.

33

Regarding the observability shown in Figure 4.2(c) and Figure 4.2(d), it can be

observed that in a 10-times expand circuit the value of more signal lines in earlier capture

cycles is more difficult to be observed from the outputs (scan FFs) after the final capture.

The deterioration of observability of signal lines at early capture cycles causes the faults

excited at an early capture cycle difficult to be propagated to the final capture cycle for

detection, which is the root cause of the fault masking.

Figure 4.2 Testability vs. Capture Cycles

Based on the analysis presented above, we have determined that the primary factor

that affects the effectiveness of the multi-cycle test in reducing the number of scan-in

patterns and shortening the TAT of POST is the incompatibility between controllability

and observability in the time-expanded circuit under multiple capture cycles. Specifically,

we have found that the controllability bias of the signal line at earlier capture cycles is

smaller than that of later cycles, resulting in lower observability. This difference in

controllability bias and observability between earlier and later cycles can lead to reduced

effectiveness of the multi-cycle test.

We insist that reconciling the incompatibility of testability under the multi-cycle test

is necessary to improve the performance of multi-cycle BIST for scan-in pattern reduction.

1
-C

o
n

tr
o
lla

b
ili

ty

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 2 3 4 5 6 7 8 9 10
Capture Cycle Number

s9234 s13207 s38584 b11 b12 b14 b15 b20

(a) Average one-controllability of signal lines at each capture cycle (b) Standard Deviation of one-controllability results at each capture cycle

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

1 2 3 4 5 6 7 8 9 10
Capture Cycle Number

s9234 s13207 s38584 b11 b12 b14 b15 b20

S
ta

n
d

a
rd

 D
e
vi

a
ti
o
n

 o
f
1

-C
o
n

tr
o
lla

b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10
Capture Cycle Number

s9234 s13207 s38584 b11 b12 b14 b15 b20

(c) Average Observability of signal lines at each capture cycle

O
b

s
e
rv

a
b

ili
ty

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10
Capture Cycle Number

s9234 s13207 s38584 b11 b12 b14 b15 b20

(d) Standard Deviation of Observability results at each capture cycle

S
ta

n
d

a
rd

 D
e
vi

a
ti
o
n

 o
f
O

b
s
e
rv

a
b

ili
ty

34

Chapter 5

5. Test Point Insertion and Selection for Multi-Cycle

BIST

5.1 Test Points for Multi-Cycle BIST

In this chapter, we introduce the observation point and control point proposed in our

previous works [37][38][39][40][41] to address the Fault Masking and the FDD of the

multi-cycle test, respectively.

5.1.1 Observation Point: FDS-FF

To improve the observability of scan FFs at the intermediate capture cycles in the

time-expanded circuit, we proposed a new scan-cell design named fault-detection-

strengthened FF (FDS-FF) that can directly observe and keep the value of FFs captured

at each cycle.

Figure 5.1 The DFT architecture of FDS-FF insertion for LBIST.

Figure 5.1 shows the structure of FDS-FF and the DFT architecture for LBIST with

User ModeCapture ModeShift ModeFunctionPort

0/10/1don’t careData InDATA

don’t care0/10/1Scan-inSIN

001Scan EnableSEN

010010010ClockCLK

011
Sequential

Test Enable
SEQ_TEST_EN

DATADATA^!SIN!SINStatus

FF

DATA

SIN

SEN

CLK

Q

SEQ_TEST_EN

FDS-FF

(a) Logic design of FDS-FF (b) Operation mode of FDS-FF

FDS-FF

SEN

CLK

CLK

FDS-FF FDS-FF FDS-FF FDS-FF

SEQ_TEST_EN

SFF SFF SFF SFF SFF

L
F

S
R

P
h

as
e

sh
if

te
r

M
IS

R

CUT

Normal Scan Chain

FDS Scan Chain

(c) LBIST with an independent FDS-FFs scan chain

35

FDS-FF insertion. The output of CUT denoted as DATA is controlled by scan enable

signal (SEN) through a NOR gate, and a sequential test controls the scan-in test enable

signal (SEQ_TEST_EN) through a NAND gate. The FDS-FF can work in three modes:

Shift, Capture, and User mode as shown in the table, where Shift and Capture modes refer

to as the Test mode, and User Mode refer to as the functional operation. The CUT will

work at the user mode when SEQ_TEST_EN and SEN are set to 0. In Test Mode,

SEQ_TEST_EN is set to 1, and the SEN signal controls the shift and the capture modes.

If SEN=1, the test pattern is loaded into FF. If SEN=0, the corresponding test responses

are captured. It should be noted that the test responses of CUT captured at each cycle are

XORed with the SIN, which is the data stored in the neighbor FF in the scan chain. In this

way, the test responses of each cycle can be compacted by the XOR gate, and the

compacted test responses will be applied to the next capture cycle as a new test pattern.

Since FDS-FFs observe and keep the capture response of CUT during the capture

operation, in order to avoid functional timing issues, all FDS-FFs are extracted to

constructed into a daisy chain and isolated from the other normal scan chains.

Figure 5.2 Replace a scan-FF with FDS-FF to address fault masking.

Figure 5.2 shows the effect of FDS-FF to address the fault masking problem. In a

time-expanded circuit, some faulty values are successfully propagated to the FF at the

intermediate capture cycles; however, they would be masked before the final capture.

Replacing a scan FF with the FDS-FF is equivalent to inserting an observation point into

the time-expanded circuit to observe and keep these faulty values before they are masked.

However, it is impractical to replace all scan-FFs with FDS-FFs; the fault effects that

never pass through the selected FDS-FFs may disappear if they cannot be propagated to

the final capture cycle. Fortunately, replacing a small count of scan cells with FDS-FFs

could achieve significant fault detection improvement [38], which is beneficial for low

hardware overhead.

FF

FF

FF

FDS-

FF

FF

FF

FF

PO

SI

SO

Excited

Fault

X
0X

FDS

FF

FDS

FF

FDS

FF

FF

FF

FF

FF

FF

FF

PI

1

0

X
lost

lost

lost

Observe & Keep the faulty value before vanishing

36

5.1.2 Control Point: Self-Flipping CP

Inserting control points into the circuit to force the target signal line to 0 (0-control)

or 1 (1-control) is a popular way to improve the testability of the circuit. However, it

would be challenging to adapt the conventional CPI to the time-expanded circuit under

multi-cycle BIST because 1) CP with a fixed control value during a complete capture

operation is less helpful to relax the controllability biasing; 2) generating the control

values for each capture cycle requires complex sequential ATPG; 3) applying the dynamic

control value to CP during the capture operation requires intricately designed control logic.

In [40][41], we have proposed an FF-CPI approach to improve the controllability of

the time-expanded circuit by modifying the captured values of partial scan FFs at each

capture cycle. The FF-CP compares the state of FF at the current capture cycle with its

state at the previous capture cycle and changes the current state to its inverse value if no

state transition occurs on the FFs during the capture cycles. In this study, we expand the

FF-CPI approach to control the combinational logic and propose the control logic that

can flip the value of the signal line of CP during the capture operation. We call it the Self-

Flipping control in this study described as follows.

Figure 5.3 Self-Flipping CP insertion for multi-cycle LBIST.

Figure 5.3 shows the design of the Self-Flipping control logic. In the capture mode,

the present state (CP_OUT@Ti-1: the state of CP after the previous capture cycle) and the

new state (CP_IN@Ti: the input value of the candidate CP of the current capture cycle) of

the CP are checked whether there is a transition occurs in the current capture cycle or not.

If not, the Self-Flipping control logic will generate the inverse value of the input state to

(b) Self-flipping control logic (c) The truth table of self-flipping control logic

(a) Inserting a self-flipping control point into the time-expanded circuit

FF

FF

FF

Combinational Logic @Ti-1 Combinational Logic @Ti

Candidate

CP

FF

FF

FF

FF

FF

FF

Scan-in

Scan-out

CP_IN

CP_OUT

FF

CAP_CTR

CP_IN CP_OUT

Capture clock

CAP_CTR
CP_OUT

@Ti-1

CP_IN

@Ti

CP_OUT

@Ti

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

37

the CP output (CP_OUT@Ti). An external control signal “CAP_CTR” is used to enable

the self-Flipping when set to 1. Otherwise, the input value of CP passes through the CP

logic to the output. It thus can keep the value of a target signal line at the adjacent time-

frame always different to relax the bias of 0/1-controllability caused by successive capture

cycles.

It is worth noting that a traditional inversion CP using an XOR gate would be

ineffective in reducing the 0/1-controllability bias because the 0/1-controllability of XOR-

CP output depends on the input signal line, which is biasing as increasing the capture

cycles. While inserting the Self-Flipping CP will cause hardware increase, it operates

automatically during the capture cycles w/o any external control, which does not cause the

extra cost in updating the ATPG to generate the deterministic control vectors.

To implement the proposed multi-cycle LBIST scheme for POST, the unknown

values (Xs) generated as switching the operation mode from test and function need to be

dealt with carefully. This issue can be addressed by separating the control logic of POST

from the test target of POST (CUTs) through wrapper logic. During the test operation, the

wrapped control logic of POST will be kept in function mode. When the test is completed,

the CUTs will be switched to the functional mode by a system reset through the control

logic of POST. The detailed solutions to handle the implementation issues for in-system-

testing have been published in [42][43].

5.2 TP Selection for Multi-Cycle BIST

This section introduces the procedure to determine the locations of CPs and OPs to

address the Fault Masking and the FDD problem induced by the controllability biasing

and observation deterioration under a multi-cycle LBIST scheme.

While the selection procedure inherits some underlying techniques proposed in our

previous works, such as the structure-based evaluation metric and the probabilistic

testability analysis of circuits for FDS-FFs and FF-CP insertion, in this study, we

consolidate them into a consistent process for TP selection under multi-cycle BIST

through the following efforts:

• We propose a new metric to evaluate the effect of candidate signal lines for CP

insertion under a multi-cycle BIST scheme.

• We introduce an improved probabilistic cost function for estimating the effect of

candidate TPs.

38

• We introduce an OP Pruning approach into the TP procedure to improve the

efficiency of TP selection under the multi-cycle BIST scheme.

It is worth noting that the proposed TP selection procedure conducts the probabilistic

evaluation to identify the candidate CPs and Ops. The proposed TP selection procedure

is a time-saving process because the procedure does not use the conventional fault

simulation. As a result, we obtain the list of the TPs, then we evaluate the fault coverage

achieved under the circuit with TPs by conducting the multi-cycle test fault simulation at

one time.

5.2.1 A New Evaluation Metrics for CP Selection

As discussed in Chapter 4, increasing the number of capture cycles would cause a

significant 0/1-controllability bias on signal lines at later capture cycles, which implies

the value of more signal lines in a large capture cycle would most likely fix at 0 or 1 in

most capture cycle. For a signal line x, if setting its value to 0(1) would cause fewer gates

with fixed output value in its arrival logic region to FFs than that of setting to 1(0), 0(1)-

controllability bias of x due to the multiple capture cycles would be helpful to fault

excitation and propagation we call it positive bias, 1(0)-controllability bias would obstruct

the fault detection called the negative bias. For the signal line shows a negative bias in

controllability, it is suggested to insert a self-flipping CP to relax its controllability bias

in the multi-cycle test. Following this, we propose the method to calculate the degree of

the 0/1 controllability bias when inserting a CP into the signal line.

• x: a signal line in the combinational circuit

• px/0: the probability of line x’s value being logic 0

• px/1: the probability of line x’s value being logic 1, where, px/1+px/0=1.0

• fgx/0: the number of gates in the arrival logic region from line x to POs/PPOs whose

output value will be fixed, as setting the value of x to 0

• fgx/1: the number of gates in the arrival logic region from line x to POs/PPOs whose

output value will be fixed by setting the value of x to 1

• BD(x): the degree of controllability bias at line x that would impact the fault

detection, where BD(x)>0 denotes a positive bias, BD(x)<0 denotes a negative bias.

BD(x)=(px/0-px/1)×(fgx/1-fgx/0) (5.1)

• CD(x): the degree of contribution to relax the controllability bias as forcing the 0/1-

controllability of line x to 0.5/0.5. CD(x)>0 denotes a positive contribution,

CD(x)<0 denotes a negative contribution that would be achieved by CP insertion.

CD(x)=(px/0-0.5)×fgx/0+(px/1-0.5)×fgx/1=(0.5-px/0)×(fgx/1-fgx/0) (5.2)

We use the s27 circuit as an example for illustration, see Figure 5.4. For signal line

i, two paths connect with the PPO (FF2) through path 1: i → G5 → G7 → G8 → w, and

39

path 2: i → G6 → G7 → G8 → w. When the value of i is 1, the output of G5, G6, and G7

will be fixed at 1, 1, 0, respectively, thus fgi/1=3. When i is 0, the output of G5 and G6

depends on the other input signal lines n and c, which implies a 0 value at i cannot directly

cause any fixed gates on the two paths to FFs, thus fgi/0=0. The probability of signal line

i’s values pi/1 and pi/0 can be calculated using the COP measurement, which is 0.25 and

0.75. The degree of controllability bias is hereby BD(i) = 0.5×3 = 1.5, which represents

that the controllability bias at signal line i is positive to fault detection.

Figure 5.4 The combinational logic frame of s27 circuit.

For the signal line with positive controllability bias, inserting a CP would cause

more fixed gates on the fault propagation paths to FFs with a negative contribution to

fault detection, e.g., CD(i)=-0.25×3=-0.75. Table 5.1 gives the evaluation value of some

signal lines shown in Figure 5.4. It can be observed that signal lines q and s show the

negative controllability bias in BIST, and inserting a CP to s would achieve the most

contribution to fault detection.

Table 5.1 Evaluation metrics of signal lines in s27

line # fgx/0 fgx/1 px/0 px/1 BD CD

h 0 2 0.75 0.25 1 -0.5

i 0 3 0.75 0.25 1.5 -0.75

n 0 1 0.75 0.25 0.5 -0.25

q 3 0 0.56 0.44 -0.36 0.18

s 0 2 0.27 0.73 -0.92 0.46

As shown in Figure 4.2, the controllability bias on signal line changes at different

capture cycles in the multi-cycle BIST. It becomes larger as increase the number of

capture cycles. Thus, the degree of controllability bias of signal line x: BD(x) and the

40

contribution of CP insertion to relax the impact of controllability bias on fault detection:

CD(x) can be easily extended for the multi-cycle test as follows.

𝐵𝐷(𝑥) =
𝑓𝑔𝑥/1 − 𝑓𝑔𝑥/0

𝑀
∑(𝑝𝑥𝑗/0 − 𝑝𝑥𝑗/1)

𝑀

𝑗=1

 (5.3)

𝐶𝐷(𝑥) =
𝑓𝑔𝑥/1 − 𝑓𝑔𝑥/0

𝑀
∑(0.5 − 𝑝𝑥𝑗/0)

𝑀

𝑗=1

 (5.4)

where pxj/1 and pxj/0 denote the probability of line x’s value being logic 1/0 at the jth

capture cycle. We use CD as the evaluation metrics for searching the candidate signal

lines for CP insertion under multi-cycle BIST, which is described in the next section.

5.2.2 TP Selection Procedure for Multi-cycle BIST

The procedure consists of two phases, Phase 1: CP insertion under a time-expanded

circuit with full FF-observation, and Phase 2: OP is pruning to remove the impotent

observation points (FDS-FF).

In Phase 1, the CP selection will be performed at the time-expanded circuit with full

observation where the FFs at intermediate capture cycles are supposed to be observable.

This is because the purpose of self-flipping CP insertion is to relax the controllability bias

caused by functional operation at each time frame, but not to create long propagation

paths that can cross multiple time frames to the final capture cycle for observation which

is an arduous task. The algorithm for CP insertion is shown in Algorithm 1.

To evaluate the quality of CPs and OPs, cost function U as follows is widely used

in various TPI techniques.

𝑈 =
1

|𝐹|
∑

1

𝑃𝑑𝑥/𝑠
∀𝑥/𝑠∈𝐹

 (5.5)

In this work, we expand the cost function considering the fault detection model

under the multi-cycle BIST scheme, where the detection probability of the faults at a

signal line denoted by Pdx/s is calculated by

𝑃𝑑𝑥/𝑠 = 1 −∏(1 − (1 − 𝐶𝑥𝑗/𝑠) × 𝑂𝑥𝑗

𝑀

𝑗=1

) (5.6)

Cxj/s and Oxj denote the s-controllability and observability of signal line x at the jth

time-frame, respectively, computed by COP measure as discussed in Chapter 4. The

difference in U before (Uorg) and after (Utp) inserting a TP can be calculated by the

following equation to identify the most effective TP from a candidate TP list.

∆𝑈 = 𝑈𝑜𝑟𝑔 − 𝑈𝑡𝑝 =
1

|𝐹|
∑ (

∀𝑖/𝑠∈𝐹

1

𝑃𝑑𝑖/𝑠
𝑜𝑟𝑔 −

1

𝑃𝑑𝑖/𝑠
𝑡𝑝) (5.7)

41

Algorithm 1: CP insertion

Inputs:

net: original CUT netlist

M: the number of capture cycles

Ncp: Maximum number of CPs

Outputs:

cplist[Ncp]: Selected CP list

netcp: CUT with CP insertion

Optional parameter:

CRthreshold: the threshold of cost reduction (≥0)

Ncand: number of candidate CP at each iteration of CP decision

Process:

1: cplist ← ∅

2: cand ← ∅ /*Candidate CP list for determining a CP*/

3: read_circuit (net);

4: fix_gate_cal(net); /*computing fgx/0 , fgx/1*/

5: time_expansion (net, M);

6: full_observation_point_insertion(𝑛𝑒𝑡);
7: while |cplist|< Ncp do

8: cop_controllability(netcp);

9: cop_observability(netcp);

10: CD_calculate (netcp);

11: cand ← ∅;

12: for j=1 to # of available candidate CP do

13: cand[j] ←unchecked signal line with the largest CD;

14: end for

15: if cand=∅ then

16: return cplist, netcp; stop the process

17: else

18: Uorg=cost_computation(netcp,M);

19: for k=1 to Ncand do

20: netcp=insert cand[k] cp to netcp;

21: update_controllablity_observability(netcand[k], M);

22: ∆𝑈𝑘=Uorg-cost_computation(netcp, M);

23: Remove cand[k] from netcp;

24: end for

25: If maximum(∆𝑈k)>= CRthreshold then

26: cplist[i]←cand[k];

27: end if

28: end if

29: insert cplist[i] to net → update netcp;

30: end while

31: return cplist, netcp;

End process

In Phase 2, we will remove the impotent observation points from the time-expanded

circuit to reduce the hardware overhead caused by FDS-FFs insertion, named OP pruning,

as shown by Algorithm 2. In OP pruning, the input is the time-expanded circuit with CP

insertion achieved at Phase 1 where all scan FFs are replaced with FDS-FFs for

observation during multi-cycle captures. We target on reducing the amount of FDS-FFs

to a user-specified number Nop by restoring the FDS-FFs that do not affect the fault

detection to scan FFs. As shown from line 14 to line 24 of algorithm 2, we compute the

cost U of each candidate FDS-FF when temporarily changing it to a scan FF which is

42

equivalent to a wire in the intermediate time-frame circuit, and remove the one which has

the least cost increase from the OP list.

The OP pruning is considered effective based on the following observations. 1) The

large number of signal lines usually can be observed by multiple FFs; 2) The FFs which

have larger observable logic regions could observe more fault effects. 3) The number of

FFs in a design is much smaller than that of signal lines, and exploring the inactive FFs

would be more time-saving than inserting OPs into the CUT.

Algorithm 2: OP Pruning

Inputs:

netcplist: CUT with CP insertion

M: number of capture cycles

Nop:Target number of OPs (FDS-FFs)

Outputs:

oplist[Nop]: FF list for FDS-FFs insertion

nettp : CUT with TPs (CP and OP)

Optional parameter:

Ncand: # of candidate OPs at each iteration for OP pruning

Process:

1: oplist ← ∅

2: cand ← ∅ /* Candidate target OP list for pruning */

3: read_circuit (netcp);

4: oplist← all FFs

5: structure_analysis(netcp);

6: FF_ranking(oplist) /*Ranking the FFs by the approximate evaluation metrics proposed in [39]*/

7: while |oplist|>Nop do

8: for j=1 to # of available candidate OP do

9: cand[j] ←select an OP in the oplist in descending order which is unchecked;

10: end for

11: if cand=∅ then

12: return oplist, nettp; stop the process

13: else

14: Uorg=cost_computation(nettp,M);

15: for k=1 to Ncand do

16: remove cand[k] OP from nettp;

17: update_observability(nettp);

18: ∆𝑈𝑘=Uorg-cost_computation(nettp, M);

19: restore cand[k] OP to nettp;

20: end for

21: If ∆𝑈k =minimum then

22: remove cand[k] OP from nettp;

23: remove cand[k] from oplist;

24: end if

25: end if

26: end while

27: return oplist, nettp;

End process

5.3 Experimental Results

Experiments are conducted on ISCAS89 and ITC99 benchmark circuits to evaluate

43

the effect of TPI under multi-cycle BIST. A 16-bits internal type LFSR (characteristic

polynomial: X16+X15+X13+X4+1) with Phase Shifter generates pseudo-random patterns.

A parallel scan structure is introduced into the CUT that consists of multiple scan chains

up to 100 FFs in length (when the total number of FFs > 1600, the maximum length of

the chain is up to 200). A multi-cycle BIST logic/fault simulator that can simulate at most

50 cycles capture per pattern is implemented in-house for stuck-at faults testing. For

automotive ICs, the ISO26262 functional safety standard imposes at least 90% latent fault

metric (permanent fault) to meet the safety goal ASIL D. Therefore, in this study, we set

a target fault coverage 90% and evaluate the effect of the proposed multi-cycle TPI that

would make the classical on-chip pseudo-random TPG-based LBIST comply with the

ISO26262 standard. Table 5.2 gives the details of CUTs.

Table 5.2 Detailed information of benchmark circuits

Circuit # gate # FF
of

stuck-at fault

Ncp

(<1% of gates)

Ncp

(<5% of FFs)

#OPs (FDS-FFs)

(<20% of FFs)

s9234 5597 228 6927 55 11 45

s13207 7951 669 9815 79 33 133

s15850 9772 597 11725 104 29 120

s38417 22179 1636 31180 1141 85 327

s38584 19253 1452 36303 97 72 290

b11 437 31 1322 2 1 6

b12 904 121 2797 9 6 24

b14 4444 245 12811 44 12 49

b15 8338 449 23528 8 8 89

b17 22645 1415 65464 201 70 283

b20 8875 490 25338 88 24 98

5.3.1 Evaluation of the Efficiency of the Multi-Cycle Test

We first performed fault simulations on the regular scan testing with single capture

(SCAN) and multi-cycle testing with 2, 4, 6, 8, and 10 capture cycles, respectively, to

evaluate the effect of multi-cycle testing for fault detection, using 100k test patterns (scan-

in) generated by LFSR. Figure 5.5 shows the fault coverage of each circuit at different

capture cycle test when 100k patterns are applied. It can be seen that for most circuits,

multi-cycle test achieved an increase in fault coverage at 2 and 4 capture cycle. As

continuous increasing the capture number to 10 cycles, the increment of fault coverage is

slowing down or getting degraded. For s9234, multi-cycle test shows significant decrease

of fault coverage. It can be explained by the incompatibility of testability shown in Figure

4.2, where 10-cycle test caused a little controllability bias, however, significant

deterioration of the observability in the expanded circuit.

44

Figure 5.5 Fault coverage of benchmark circuit with 100k patterns.

Figure 5.6 shows the curve of the average fault coverage of all CUTs by increasing

the number of patterns. The horizontal and vertical axis shows the pattern number and the

corresponding fault coverage, respectively. The average fault coverage of all CUTs

confirms that multi-cycle test has a statistical improvement in fault detection for most

benchmark circuits compared with scan testing (SCAN). Applying 4 and 6 capture cycles

achieved the most fault coverage improvement, and the increment of fault coverage

becomes less as the number of capture cycles increases to 8 and 10 cycles.

Figure 5.6 Scan testing vs multi-cycle testing.

The above observations fit the basic feature of multi-cycle testing discussed in

Chapter 4. Multiple capture operations would provide more detection opportunities for

60

65

70

75

80

85

90

95

100

s9234 s13207 s15850 s38417 s38584 b11 b12 b14 b15 b17 b20

F
au

lt
 C

o
v

er
ag

e
(%

)

scan 2-cycle 4-cycle 6-cycle 8-cycle 10-cycle

85

86

87

88

89

90

91

92

5
1

6
7

5
3

3
4

5
5

0
1

5
6

6
8

5
8

3
5

5
1

0
0

2
5

1
1

6
9

5
1

3
3

6
5

1
5

0
3

5
1

6
7

0
5

1
8
3
7
5

2
0

0
4

5
2

1
7

1
5

2
3

3
8

5
2

5
0

5
5

2
6

7
2

5
2

8
3

9
5

3
0

0
6

5
3

1
7

3
5

3
3

4
0

5
3

5
0

7
5

3
6

7
4

5
3

8
4

1
5

4
0

0
8

5
4

1
7

5
5

4
3

4
2

5
4

5
0

9
5

4
6

7
6

5
4

8
4

3
5

5
0

1
0

5
5

1
7

7
5

5
3
4
4
5

5
5

1
1

5
5

6
7

8
5

5
8

4
5

5
6

0
1

2
5

6
1

7
9

5
6

3
4

6
5

6
5

1
3

5
6

6
8

0
5

6
8

4
7

5
7

0
1

4
5

7
1
8
1
5

7
3

4
8

5
7

5
1

5
5

7
6

8
2

5
7

8
4

9
5

8
0

1
6

5
8

1
8

3
5

8
3

5
0

5
8

5
1

7
5

8
6

8
4

5
8

8
5

1
5

9
0

1
8

5
9

1
8

5
5

9
3

5
2

5
9

5
1

9
5

9
6

8
6

5
9

8
5

3
5

F
au

lt
 C

o
v
er

ag
e(

%
)

of scan-in patterns

Effect of multi-cycle test on the fault detection of benchmark circuits

SCAN 2cycles 4cycles 6cycles 8cycles 10cycles

45

the fault that the scan-in pattern cannot detect. Therefore, it is possible to improve the

fault detection of the scan-in pattern. However, the deterioration of testability of signal

lines in the time-expanded circuit would interfere with future fault detection as increasing

the capture cycles. To reinforce the effect of multi-cycle BIST on scan-in pattern

reduction, CP insertion and FDS-FFs insertion are introduced, and their effects are

described as follows.

5.3.2 Evaluation of the Efficiency of the CPI and the OPI

We conducted the CP selecting and OP pruning algorithm proposed in Section 5.2

on the benchmark circuits to identify a specified amount of CPs and FDS-FFs, where the

maximum number of CPs Ncp was set to 1% of the gate number of CUT, and 5% of the

FFs, respectively. The expected amount of FDS-FFs is set to 20% of the total number of

FFs in the CUT. The number of CPs and FDS-FFs are shown in the fifth and the sixth

column of Table 5.2, respectively. To demonstrate the difference between OPI and CPI,

we performed fault simulation under 10 cycles by individually inserting the identified

CPs and OPs into the CUTs, denoted by CP-ONLY and OP-ONLY, respectively.

CPI&OPI denotes inserting both the CPs and OPs into the CUTs. Figure 5.7 shows the

curve of average fault coverage of the benchmark circuits, increasing scan-in patterns to

100K under different DFT strategies. The figure only presents the curves up to 50K

patterns for demonstration. Full observation replaces all FF with FDS-FFs has been

conducted on the CUTs w/(w/o) CP insertion denoted by FullOB, CP&FullOB,

respectively. While it is not for practical use due to hardware overhead concerns, the

results represent the upper bound of the fault coverage possibly achieved by OPI, which

is used to evaluate how far the OP pruning has reached in identifying the OPs for FDS-

FFs insertion.

Compared to the regular scan test (SCAN), the multi-cycle test w/o TPI denoted by

“10-Cycle” in the figure achieved a significant fault coverage improvement where a

target fault coverage (90%) is attained by applying 14,260 scan-in patterns under a 10-

cycle test, which cannot be achieved by scan testing even with more than 100K scan-in

patterns. Replacing 20% of FFs with FDS-FFs (OPI-ONLY) further improved the fault

coverage and reduced the necessary scan-in patterns to 5,175 for the target 90% fault

coverage as well as the effect achieved by full observation (replacing all scan FFs with

FDS-FFs). The results demonstrate the effect of FDS-FFs insertion that directly observes

the values of FFs at each capture cycle to relax the fault masking problem in the time-

expanded circuit.

Note the fault coverage curve of CPI-ONLY in Figure 5.7, where we inserted 1% of

46

the gate number of CPs into the CUTs, and it shows almost the same fault coverage

improvement (≈93%) and much more scan-in pattern reduction (2,195 for 90% fault

coverage) than that of OPI-ONLY. The results indicate 1) inserting Self-Flipping CP into

the CUT that relaxes the controllability bias in a time-expanded circuit is helpful in

improving the fault detection of capture patterns 2) the effect of CPI is limited due to the

fault masking problem in the time-expanded circuit. When inserting both the identified

CPs and OPs into the CUTs denoted by CPI&OPI, we achieved a sharp increase in fault

coverage compared to inserting CPs and OPs individually. The final fault coverage of

100K scan-in patterns increases to 95.01%. The number of scan-in patterns for achieving

90% fault coverage is drastically reduced to 585 (24.4X reduction compared to the multi-

cycle test). Note the fault coverage curve of 10-cycle (multi-cycle test) and the

CP&FullOB, which represents the upper bound of the fault coverage possibly achieved

by CPI&OPI, inserting both the CPs and OPs (CPI&OPI) identified by our proposed

method achieved remarkable fault coverage increase and pattern reduction that is very

close to the upper bound.

Figure 5.7 Fault coverage vs. Pattern number (scan testing, multi-cycle testing, OPI

and CPI under multi-cycle testing).

Table 5.3 and Table 5.4 show the detailed results of the final fault coverage achieved

by applying 100K patterns and the number of scan-in patterns for attaining 90% stuck-at

fault coverage, respectively. The experimental results when inserting fewer CPs (<5% of

FFs) into the benchmark circuits are also presented in the tables. The results show that

the 10-cycle test would cause the fault coverage loss in most ISCAS89 circuits (s9234,

80

82

84

86

88

90

92

94

96

98

5
6
7
5

1
3
4
5

2
0
1
5

2
6
8
5

3
3
5
5

4
0
2
5

4
6
9
5

5
3
6
5

6
0
3
5

6
7
0
5

7
3
7
5

8
0
4
5

8
7
1
5

9
3
8
5

1
0
0
5
5

1
0
7
2
5

1
1
3
9
5

1
2
0
6
5

1
2
7
3
5

1
3
4
0
5

1
4
0
7
5

1
4
7
4
5

1
5
4
1
5

1
6
0
8
5

1
6
7
5
5

1
7
4
2
5

1
8
0
9
5

1
8
7
6
5

1
9
4
3
5

2
0
1
0
5

2
0
7
7
5

2
1
4
4
5

2
2
1
1
5

2
2
7
8
5

2
3
4
5
5

2
4
1
2
5

2
4
7
9
5

2
5
4
6
5

2
6
1
3
5

2
6
8
0
5

2
7
4
7
5

2
8
1
4
5

2
8
8
1
5

2
9
4
8
5

3
0
1
5
5

3
0
8
2
5

3
1
4
9
5

3
2
1
6
5

3
2
8
3
5

3
3
5
0
5

3
4
1
7
5

3
4
8
4
5

3
5
5
1
5

3
6
1
8
5

3
6
8
5
5

3
7
5
2
5

3
8
1
9
5

3
8
8
6
5

3
9
5
3
5

4
0
2
0
5

4
0
8
7
5

4
1
5
4
5

4
2
2
1
5

4
2
8
8
5

4
3
5
5
5

4
4
2
2
5

4
4
8
9
5

4
5
5
6
5

4
6
2
3
5

4
6
9
0
5

4
7
5
7
5

4
8
2
4
5

4
8
9
1
5

4
9
5
8
5

F
au

lt
 C

o
v

er
ag

e
(%

)

Number of Scan-in Patterns

SCAN 10-Cycle OPI_ONLY FullOB CPI-ONLY CPI&OPI CP&FullOB

585 by CPI&OPI

2195 by CPI_ONLY

14260 scan-in patterns by 10-Cycle Test to gain 90% fault coverage

5175 by OPI_ONLY

+ ++ +

≒24.4X reduction

47

s13207, s38584); however, it achieves a significant increase in ITC99 benchmark circuits.

Where ISCAS89 circuits show a much more testability bias, increasing the capture cycles

are vulnerable to fault masking and FDD problem. While inserting OP or CP individually

both improved the fault coverage and reduce the patterns for attaining 90% fault coverage

for all circuits, it suggests that combining the CPs and OPs can achieve the most pattern

reduction under the multi-cycle BIST scheme. Reducing the number of CPs causes a

corresponding degradation in the fault coverage and the scan-in pattern reduction,

however, the degradation is small, e.g., when reduce the number of CPs from 201 to 70

for b17 circuit, the fault coverage with 100k patterns decreased from 97.81% to 96.29%,

scan-in patterns for 90% fault coverage increased from 130 to 185. The reduction of scan-

in patterns compared to the multi-cycle test is remarkable for shortening the TAT of POST

with less hardware overhead.

Table 5.3 The final fault coverage reached by 100K scan-in patterns

Circuit

Design for Testability Approaches

SCAN
10-

Cycle
OPI_ONLY FullOB

of CP<1% of gates # of CP<5% of FFs

of

CPs

CPI-

ONLY
CPI&OPI CP&FullOB

of

CPs

CPI-

ONLY
CPI&OPI CP&FullOB

s9234 87.31 84.94 89.94 90.00 55 82.69 89.68 91.80 11 83.3 87.96 88.02

s13207 90.47 84.81 92.20 92.96 79 86.16 92.75 93.89 33 85.6 90.1 91.01

s15850 87.51 87.73 88.48 90.18 104 85.09 87.41 91.52 29 86.47 87.71 90.77

s38417 95.16 97.52 97.96 98.03 141 98.19 98.66 98.72 85 98.00 98.55 98.62

s38584 91.31 90.81 91.59 92.07 97 91.16 91.70 92.28 72 90.27 90.93 91.53

b11 96.75 96.75 96.75 96.75 2 98.03 98.03 98.03 1 96.82 96.82 96.82

b12 97.28 98.64 98.68 98.68 9 99.18 99.21 99.21 6 97.6 97.6 97.64

b14 85.61 90.36 90.38 90.40 44 93.71 93.96 94.07 12 93.81 94.04 94.08

b15 69.75 92.94 92.95 92.95 8 98.35 98.36 98.36 8 98.35 98.36 98.36

b17 79.17 92.85 92.85 92.86 201 97.76 97.81 97.83 70 96.27 96.29 96.32

b20 84.69 89.52 89.66 89.69 88 93.10 93.61 93.94 24 92.68 93.17 93.22

Table 5.4 The number of scan-in patterns to achieve 90% fault coverage

Circuit

Design for Testability Approaches

SCAN
10-

Cycle
OPI_ONLY FullOB

of CP<1% of total gates # of CP<5% of FFs

of

CPs

CPI-

ONLY
CPI&OPI CP&FullOB

of

CPs

CPI-

ONLY
CPI&OPI CP&FullOB

s9234 >100K >100K >100K >100K 55 >100K >100K 9180 11 >100K >100K >100K

s13207 20560 >100K 11565 7375 79 >100K 6050 4175 33 >100K 59835 8885

s15850 >100K >100K >100K 68905 104 >100K >100K 2380 29 >100K >100K 4710

s38417 5780 1710 590 460 141 250 80 55 85 310 85 60

s38584 8180 10645 3700 1960 97 1555 575 305 72 12795 960 330

b11 475 120 120 120 2 45 40 35 1 115 115 105

b12 1280 175 170 170 9 100 45 45 6 260 210 195

b14 >100K 58280 58280 53425 44 1285 870 770 12 885 675 605

b15 >100K 4180 4180 4115 8 285 230 170 8 285 230 170

b17 >100K 4305 4300 4300 201 180 130 100 70 260 185 140

b20 >100K >100K >100K >100K 88 4330 2045 935 24 7480 3740 3685

48

5.4 Conclusions

The multi-cycle BIST has room for improvement to reduce the volume of scan-in

patterns. Therefore, this study investigated the stuck-at fault detection model in the time-

expanded circuit.

We revealed that the incompatibility between the controllability and observability

of signal line as increasing the capture cycles would induce the fault masking and fault

detection degradation problem. Those problems obstruct the effect of multi-cycle tests to

test pattern reduction. We introduced the TPI technique to a multi-cycle LBIST scheme

focused on reducing the volume of scan-in patterns for a target fault coverage to address

this issue. The TPI approach replaces partial scan cells with FDS-FF referred to as OPI to

enhance the observability and inserts Self-Flipping control logic into the combinational

logic referred to as CPI to relax the controllability bias of signal lines of CUT at the

intermediate capture cycles.

To identify the TPs that could achieve the most scan-in pattern reduction, we

proposed a metric called the CD (the degree of contribution to relax the controllability)

to evaluate the effect of candidate CPI signal lines and introduced an improved

probabilistic cost function for estimating the effect of CP and OP insertion under multi-

cycle BIST scheme. A TPI procedure including CP insertion and OP pruning is also

proposed to identify the effective TPs to achieve the most scan-in pattern reduction. The

experimental results on ISCAS89 and ITC99 benchmarks show 24.4X pattern reduction

on average that confirming the effectiveness of the proposed TPI for shortening the test

application time of POST.

In the future work, we will implement the proposed TP selection algorithm to

support the industrial design, to evaluate the effectiveness of the multi-cycle LBIST

scheme on the commercial automotive ECUs.

49

Part III: Test to Memory-based Programmable

Logic Device

50

Reconfigurable devices (e.g., FPGAs: field-programmable gate arrays) allow users

to customize the functions in-field that provides a flexible (custom logic and routing) and

scalable (add new functions) platform for system development, with faster development

cycle time (better time-to-market), low design cost (e.g., IP reuse), high-performance

(high-speed hardware), and long-term maintenance (update function). Benefiting from

such abilities, FPGAs have gone successfully for many applications such as the IoT

(internet of things) [44], SDV (self-driving vehicle) [45], and AI (artificial intelligence)

[46].

However, FPGAs suffer from area, power, and delay due to programmable

interconnect resources [47][48]. Large amounts of interconnect resources also require

multi-layer wiring architecture and advanced manufacturing technology that causes

significant production costs. Large area, power, delay, and production cost issues prevent

the FPGA from more.

Recently, a new type of reconfigurable device called MPLD (memory-based

programmable logic device) [49] is under development for edge computing devices in

IoT and AI applications. In contrast to FPGAs, which require large amounts of

programmable interconnect resources to achieve programmability, MPLD is constructed

only with an array of MLUTs (multiple look-up tables) without any extra programmable

interconnect resources. An MLUT is the essential reconfigurable element constructed

using general SRAMs and connects with its neighbors via Address-inputs/Data-outputs

called AD interconnects. Users can configure wires and logic into MLUTs by writing the

corresponding truth tables into the SRAMs. This feature enables high-density

reconfigurable devices with low production costs, low power consumption, and minimal

delay.

To guarantee the long-term reliability of MPLD, extensive production testing with

high quality is first required to identify as many manufacturing defects as possible in the

MLUT array. When the device is operating in the field, various hard-to-predict factors,

such as aging phenomena [50][51], and environmental factors including operating

temperature, power supply, noise, etc., can cause delay degradation in the MLUT array

of MPLD and threaten its long-term reliability [52].

In this part, we focus on the issues that would affect the long-term reliability of

MPLD. We propose a test method to address these reliability concerns to detect and

identify interconnect defects in the MLUT array during the production phase. We also

propose a delay monitoring technique to detect aging-caused failures in the field.

51

The proposed test method creates route maps in MPLD for fault propagation by

configuring pre-designed test cubes into the SRAM array, it then excites faults by

applying an external walking-zero/one vector to the external input ports of MPLD and

identifies any faults through fault effects propagated to the external output ports. The

delay monitoring method configures a novel ring oscillator (RO) logic design into MPLD

to measure aging-induced delays. We designed an MPLD with a 6×6 MLUT array to

evaluate the proposed methods by performing logic simulations. The simulation results

with fault injection confirmed the effectiveness of the proposed methods.

The main contributions of this part are as follows.

1. We explore the fault models of interconnect defects within the MLUT array of

MPLD.

2. We propose approaches to test stuck-at faults and bridge faults caused by

interconnect defects in the MLUT array during MPLD production. This

contributes to high reliability and yield improvement.

3. We propose a test method to accurately identify the location of faults. The

proposed test method improves the manufacturing process and enables the

avoidance of faulty MLUT blocks, thereby ensuring high reliability when the

MPLD is put into practical use.

4. We investigate the reliability issues induced by aging when the MPLD operates

in the field and propose a monitoring technique to measure the aging-induced

delay variations by configuring a novel ring oscillator logic design into MPLD.

The remainder of this part is organized as follows: Chapter 6 introduces the

architecture of MPLD and its basic working principle. Chapter 7 discusses the reliability

concerns in the lifecycle of MPLD. Chapter 8 proposes the production test solution for

interconnect defects. Chapter 9 presents the delay monitoring method.

52

Chapter 6

6. Memory-based Programmable Logic Device (MPLD)

This chapter gives an introduction to the architecture of the MPLD and its working

principle, in order to serve as a basis for the work that follows in Chapters 7, 8, 9, and 10.

The rest of this chapter is organized as the following: Section 6.1 introduces the

architecture of the MPLD by describing detailed its structure, main component elements,

and operation functions of these elements. Section 6.2 describes the working principle of

the MPLD through two examples of configuring logic circuits to a single MLUT and

multiple MLUTs, respectively. Finally, the chapter concludes in Section 6.3.

Figure 6.1 MPLD Architecture.

6.1 MPLD Architecture

Row
Decoder MLUT

Column
Decoder

MLUT

MLUT

MLUT

MLUT

MLUT MLUT MLUT

M
e

m
o

ry
 O

p
e

ra
tio

n
 IO

 P
o

rts

L
o

g
ic

 O
p

e
ra

tio
n

 IO
P

o
rts

Memory Address

Memory Data-In

MLUT

Data Out
Selector

ml_ctrl

Logic Inputs

Logic Outputs

SRAM1
(Asynchronous)

SRAM2
(Asynchronous)

SRAM3
(Synchronous)

SRAM4
(Synchronous)

Memory-Logic

Control Circuit

Logic

Address/Data

Memory

Address/Data

ml_ctrl

(b) MLUT Structure

(a) MPLD Structure

OCR

en_n we_n reset_nclk

Control Input Ports

53

6.1.1 MPLD Structure: MLUTs (Multiple Look-up Tables) Array

Figure 6.1(a) shows the structure of the MPLD. it is constructed by an array of

reconfigurable cells named the MLUTs (multiple look-up tables). The MLUTs array can

work in either two operation modes: memory or logic operation mode, by manipulating a

memory-logic control signal ml_ctrl at an external input port of the MPLD. In memory

operation mode, a row decoder, column decoder, memory address bus, memory data-in

bus, and data out selector are used to configure (read out) data into (from) the MLUT in

the array, via external memory operation IO (input/output) ports. In logic operation mode,

configured data can function logically in the array, driven by the external logic operation

input ports, and the function results are out to the external logic operation out ports.

Figure 6.1(b) shows the structure of the MLUT. Which is constructed by two

asynchronous SRAMs (SRAM1, SRAM2), two synchronous SRAMs (SRAM3, SRAM4),

a memory-logic control circuit, and an output control register (OCR). The asynchronous

SRAMs are used to create combinational logic functions, and the synchronous SRAMs

are used to create sequential logic functions. The memory-logic control circuit, driven by

the ml_ctrl signal, controls the memory and logic operation of the MLUT. The OCR is

used to control the logic data output of the MLUT.

6.1.2 MPLD Memory Operation Mode

The MPLD works in the memory operation mode when by setting the value of the

ml_ctrl signal to 0; this operation mod includes two operation options: the configuring

operation and the reading operation. In the configuring operation, the data contents in the

SRAMs and OCR of each MLUT can be configured. In the reading operation, the data

contents in the SRAMs can be read out.

Figure 6.2 shows the schematic of the MPLD working in the memory operation mod.

A we_n signal handles the two operation options; setting the value of the we_n signal to

0 allows the configuring operation, and conversely, setting it to 1 allows the reading

operation.

For the MPLD with a size of X×Y (X columns and Y rows) MLUTs array, there are

log2X-bit column selection input ports, mlut_x, and log2Y-bit row selection input ports,

mlut_y, are used to select an MLUT to be configured or read in the array, via respectively

the column decoder and row decoder, and are used to select the data output of an MLUT

from the array via the data out selector. The column decoder and row decoder respectively

generate X-bit column enable signals and Y-bit row enable signals, mlut_c[X-1:0] and

mlut_r[Y-1:0], to enable an MLUT in the array; where if the values both of mlut_c[i] and

54

mlut_r[j] are 1, the MLUT xiyj (where i ∊ [0, X-1], j ∊ [0, Y-1]) is valid for the configuring

or reading operation. A memory address input ports provide the memory address bus, mad,

directly connecting to each MLUT, to access the SRAMs or OCR in the MLUT, for

specifying a target address for the configuring or reading operation. In the configuring

operation, a memory data input ports provide the memory data-in bus, mdata_i, directly

feeding to each MLUT for supplying the data contents configured to the target address of

the SRAMs or OCR specified by mad. In the reading operation, a memory data out ports,

mdata_o, via the data out selector, out the data contents at the target address of the SRAM

specified by the mad, from the MLUT selected by mlut_x and mlut_y.

Figure 6.2 Schematic of MPLD working in memory operation mod.

Figure 6.3 Schematic of MLUT working in memory operation mod.

R
o

w
 S

e
le

c
tio

n
 In

p
u

t P
o

rts

C
o

lu
m

n
 S

e
le

c
tio

n
 In

p
u

t P
o

rts

Memory Data Out Ports

R
o

w
 D

e
c

o
d

e
r

C
o

lu
m

n
 D

e
c

o
d

e
r

mlut_r[0] mlut_c[0]

mlut_y mlut_x

Data Out elector

Memory Address/Data Input Ports

mlut_r[1]

mlut_r[Y]

mlut_c[1]

mlut_c[X]

mad mdata _i

mdata _o

MLUT
(x0y0)

MLUT
(x0y1)

MLUT
(x0yY)

MLUT
(x1y0)

MLUT
(x1y1)

MLUT
(x1yY)

MLUT
(xXy0)

MLUT
(xXy1)

MLUT
(xXyY)

ml_ctrl we_n

en_n reset_n

clk

SRAM1
2nword×m-bit
(Asynchronous)

SRAM2
2nword×m-bit
(Asynchronous)

SRAM3
2nword×m-bit
(Asynchronous)

SRAM4
2nword×m-bit
(Asynchronous)

OCR

mad

mdata_i

o_mdata2

n

m

m

55

Figure 6.3 shows the schematic of the MLUT working in the memory operation mod.

Where for the SRAM with the size of 2nword×m-bit, the mad are n+3 bits; both the

mdata_i and the mdata_o are m bits. The highest bit of the mad, mad[n+2], is used to select

the OCR; the two bits of the mad, mad[n+1:n], are used to specify an SRAM from four

SRAMs; and the remainder n-bits of the mad, mad[n-1:0], are used to specify the address

of the SRAM specified selected. The m-bit data contents in a specified target address can

be configured and read via the m-bit memory data inputs mdata_i and the m-bit memory

data outputs o_mdata, respectively.

6.1.3 MPLD Logic Operation Mode

The MPLD works in the logic operation mode when by setting the value of the

ml_ctrl signal to 1; in this mode, the configured data can function logically in the MLUTs

array. Figure 6.4 shows the schematic of the MPLD working in the logic operation mod.

In the MLUTs array, each MLUT has m-bit logic address inputs Am-1:0 and m-bit logic

data outputs Dm-1:0, referred to as the m-pair AD interconnects, used for logic operation

mode. The logic address inputs of the inner MLUTs are connected to the logic data outputs

of its adjacent MLUTs. The logic address inputs and logic data outputs of the outermost

MLUTs are connected to the logic operation IO (Input/Output) ports of the MPLD device.

Figure 6.4 Schematic of MPLD working in memory operation mod.

Figure 6.5 shows the schematic in the logic operation mode of an MLUT. Each

IO

IO

IO

MLUT

MLUT

MLUT

MLUT

MLUT

MLUT

MLUT

MLUT

MLUT

MLUT

MLUT

MLUT

IO

AD interconnects

56

SRAM has the 2m/2word×m-bit size accessed by m/2-bit address inputs and m-bit data

outputs. The low-order m/2-bit address inputs, Am/2-1:0, are shared by SRAM1 and SRAM3,

and the high-order m/2-bit, Am-1:m/2, are shared by SRAM2 and SRAM4, respectively. An

address transition detector (ATD) circuit is put into the address inputs of the asynchronous

SRAM to detect the value changes coming from the data outputs of its adjacent MLUTs

at high speed for combinational logic operation. A logic output control circuit controls

the logic data outputs of MLUT by using an m-bit OCR, OR gates, and EOR gates.

Figure 6.5 Schematic of MLUT working in memory operation mod.

Figure 6.6 ATD circuit.

Figure 6.6 shows the ATD circuit structure. it comprises an address input switching

unit (AISU, containing D-latch components), an address change detection unit (ACDU,

containing constant delay components and signal change detection logic), and an address

output switching unit (AOSU, containing D-FlipFlop components). The ACDU controls

SRAM1
16word×8bit
(Asynchronous)

SRAM2
16word×8bit
(Asynchronous)

SRAM3
16word×8bit
(Synchronous)

SRAM4
16word×8bit
(Synchronous)

C0 C7

~ ~

~ ~

~
OCR

A0

A1

A2

A3 A4

A5

A6

A7

D0

D1

D2

D3

D7

D6

D5

D4

A
T

D

A
T

D
Logic

Output Control

Circuit

A0

A2

A3

A1

a12

a13

a11

Input Switching

a10

Change Detection Output Switching

atdin_en atdpulse

atdce_n

atdclk

D-latch D-FF
Constant Delay

57

the AISU via a signal atdin_en and the AOSU via a signal atdpulse. When the ACDU detects

that no address change occurs, it generates an enable signal atdin_en to enable the D-latches

in the AISU to switch the address input of the MLUT (e.g., A0 to A3) and performs signal

change detection for them. Further, if the ACDU detects an address change, a pulse signal

is generated on atdpulse to trigger D-FlipFlops in the AOSU to switch the address input

(A0~A3) of the MLUT to the address input (a10~a13) of the SRAM. In addition, atdce_n

and atdclk signals will be output to drive the SRAM.

Figure 6.7 Functional operation of logic output control circuit.

Figure 6.7 shows the functional operation of the logic output control circuit. The Ck

of the OCR controls the logic data output of the MLUT Dk, as an input to an EOR gate to

enable this EOR logic. The other input of the EOR gate is the output of an OR gate. The

inputs of the OR gate are the k-th data outputs of all SRAMs (d1k, d2k, d3k, d4k). In essence,

this output control circuit performs the following logic function:

Dk = Ck ⨁ (d1k ⋁ d2k ⋁ d3k ⋁ d4k) (6.1)

When Ck = 0, this output control circuit is equivalent to an OR logic for k-th data

outputs of all SRAMs:

Dk = d1k ⋁ d2k ⋁ d3k ⋁ d4 (6.2)

When Ck = 1, this output control circuit is equivalent to a NOR logic for k-th data

outputs of all SRAMs:

Dk = d1k ⋁ d2k ⋁ d3k ⋁ d4k (6.3)

By using the output control circuit, i.e., OCR, OR, and EOR, various types of output

logic functions can be implemented in the MLUT for its logic inputs, such as common

DkCkd1kA1A0

00000

10110

10101

10111

DkCkd1kA0

1100

0111

Dk
A0
A1

Dk
A0
A1

Dk
A0

A1

Dk
A0

A1

DkA0DkA0

d1k

d2k

d3k

d4k

Dk

OCR

Ck

Ck=0

Ck=1

d1k
d2k
d3k
d4k

Dk

Equivalent Logic

d1k
d2k
d3k
d4k

Dk

Equivalent Logic

DkCkd1kA1A0

11000

01110

01101

01111

DkCkd1kA1A0

00000

00010

00001

10111

DkCkd1kA1A0

11000

11010

11001

01111

DkCkd1kA0

0000

1011

58

logics like OR, NOR, AND, NAND, INVERTER, and wiring. The most important role

of the OCR is to control the output logic function of the MLUTs in the logic mode without

changing the contents of the truth table back to the memory mode.

In such architecture, each MLUT can work in either memory or logic operation

mode. In memory operation mode, users can access (read/write) data as a regular memory

block. When the MLUT is used as reconfigurable computing, first it is needed to put the

MPLD in the memory operation mode to write the truth table of the logic function into

the corresponding SRAMs, then, switch the device to the logic operation mode.

6.2 MPLD Work Principle

Figure 6.8 Logic configuration in a single MLUT.

Figure 6.8 shows an example to configure logic gates and wires in an MLUT. Here

Data OutputsAddress Inputs

D0D1D2D7~D3A0A1A2A3

000

0

0000

0001000

0000100

1001100

0100010

1111101

0110011

0111011

0110111

1111111

Address InputsData Outputs

A4A5A6A7D3~D0D4D5D6D7

0000

0

001

0

1000101

0100101

1100001

0010011

1101000

0011010

1011110

0111110

1111010

D6A7

D5A6D4

A4
A5

Truth Table2

D0

A0
A1

D1

A2
A3 D2Truth Table1

SRAM3
16word×8bit
(Synchronous)

SRAM4
16word×8bit
(Synchronous)

~ ~

all-0
OCR

A0

A1

A2

A3 A4

A5

A6

A7

D0

D1

D2

D3

D7

D6

D5

D4

A
T

D

A
T

D

Logic

Output Control

Circuit

To SRAM1 To SRAM2

59

we use two asynchronous SRAMs to configure an AND gate, an OR gate, and a wire into

SRAM1, an XOR gate, a wire, and an INVERTER into SRAM2. We choose the address

A0 and A1 of MLUT as the AND gate’s inputs, A2 and A3 as the OR gate’s inputs, A4 and

A5 as the XOR gate’s inputs, A7 as the INVERTER’s input, the data output D0, D1, D2, D4,

D5, and D6 as the output of the AND gate, OR gate, wire A3 → D2, XOR gate, wire A6 →

D5, and INVERTER, respectively. We represent the AND, OR logic, and the wire A3 →

A2 in the truth table1, the XOR logic, wire A6 → D5, and the INVERTER in the truth

table2. In memory operation mode, we write the truth table1 and truth table2 into the

SRAM1 and SRAM2, respectively. Since the data outputs of SRAMs are connected to

each other (by OR gate) and controlled by the OCR. We need to set the value of the

remaining data outputs of SRAMs to all-zero and the OCR to all-zero. In logic operation

mode, the MLUT will execute the configured logic and wires as a combinational logic

block.

Figure 6.9 shows an example to configure a logic circuit in two MLUTs. The circuit

has two inputs a and b, two internal signal lines c and d, and an output e. First, the logic

partition is performed to divide the circuit into two sub-logics. Then, determining the

address input and data output lines of the MLUTs according to each sub-logic (e.g.: a →

A0, b → A1, c → D5, and d → D4), and computing the truth tables of the sub-logics. Finally,

writing the truth tables in the SRAMs within the MLUTs.

Figure 6.9 Configure a logic circuit in two MLUTs.

It is worth noting that wires can be configured in MLUTs as logic interconnects

which can provide smaller delay and lower power consuming than FPGA.

D0
A0

A4

A5
D5

D4
D4
A4

D5
A5

A1
D1

A0

D0

MLUT2

MLUT1

a→A0
b→A

c→D5

d→D4

D5 of MLUT1→A5
D4 of MLUT1→A4

D0 of MLUT2→e

Truth Table of MLUT1
Data outputAddress input

D0D1D2D3D4D5D6D7A0A1A2A3

000000000000

000000001000

000010000100

000011001100

000000000010

000000001010

000010000110

000011001110

000000000001

000000001001

000010000101

000011001101

000000000011

000000001011

000010000111

000011001111

Data outputAddress input

D0D1D2D3D4D5D6D7A4A5A6A7

000000000000

100000001000

100000000100

100000001100

000000000010

100000001010

100000000110

100000001110

000000000001

100000001001

100000000101

100000001101

000000000011

100000001011

100000000111

100000001111

Truth Table of MLUT2

Logic circuit

A6

A7
D7

D6

D6
A6

D7
A7

A3
D3

A2
D2

D3
A3

D2
A2

D1
A1

a
b

c

d e
Logic

Partition

Logic

Partition

60

Chapter 7

7. Reliability issue in MPLD

As a novel type of programmable logic device under development, and given its

promising features of low production cost, reduced power consumption, minimal delay,

fast data processing, and high flexibility, the MPLD is poised to revolutionize various

applications, including IoT and AI edge devices. However, it is crucial to acknowledge

that the MPLD’s reliability can potentially be compromised by manufacturing defects

during the production phase and aging in the field use phase. The implications of

reliability degradation can impede the practical use of MPLD. Therefore, it becomes

paramount to prioritize the resolution of reliability concerns to ensure the long-term

dependability of the MPLD device. By addressing these challenges head-on, we can

confidently unlock the full potential of the MPLD and enable its seamless integration into

a wide range of cutting-edge technologies.

This chapter introduces the factors that affect the long-term reliability of MPLD in

the production phase and the field use phase, respectively.

The rest of this chapter is organized as the following: Section 7.1 introduces the

reliability issues caused by manufacturing defects during the production phase of the

MPLD, with the focus revolving on interconnection defects between MLUTs. Section 7.2

describes reliability issues caused by aging when MPLD is operated in the field, focusing

on ATD circuits in MLUTs that are sensitive to aging. Finally, the chapter concludes in

Section 7.3.

7.1 Manufacturing-Defects-caused Reliability Issue

In the production phase of the MPLD, as depicted in Figure 7.1, a multitude of

defects would be present in the SRAM memory of the MLUT. While conventional

memory testing methods can address these memory defects, however, there are also

numerous defects that would arise between MLUTs, particularly in the form of

interconnect defects that occur at the logic address input lines and logic data output lines

of MLUTs. These interconnect defects encompass problems like shorts, bridges, and open

circuits, all of which can lead to significant losses in yield and a decline in the reliability

of the MPLD. Therefore, the focus of this study is placed specifically on tackling the

interconnect defects that occur at AD interconnect between MLUTs.

61

Figure 7.1 Manufacturing defects in MPLD.

Interconnect Defects

As described in Section 6.1.2 of Chapter 6, the address inputs of a target MLUT

come from the data outputs of its adjacent MLUTs. A defect at the AD interconnect would

change the value of the address inputs of MLUTs, which cause access errors and results

in logic faults in the configured circuit.

Figure 7.2 shows the example of an AD interconnect-defect-caused fault, which

assumes that an OR-logic is configured in an MLUT (D5 = A1 ⋁ A0) through the truth

table. For a defect-free device, when the all-zero 00000000 are applied to the address

inputs of the MLUT, the corresponding contents 00000000 stored in the SRAM will be

readout and the OR gate will output 0 (D5: 0). If there is a short interconnect defect

between the supply and the address input A0 of the MLUT, which will fix the value of A0

at logic 1. In this case, the normal address of all-zero 00000000 will be changed to

00000001, which causes an access error where the content of 0010000 at the address

00000001 is read out, thus the output of the OR gate D5 will output 1.

Figure 7.2 Interconnect defect causes logic fault in configured circuit.

A1

D1

A0

D0

A3

D3

A2

D2

D6

A6

D7

A7

D4

A4

D5

A5

10

0

0

0

0

0

0

0

0

0/1

0

0

0

0

0

0

Logic
fault

DataAddress

D0D1D2D3D4D5D6D7A0A1A2A3A4A5A6A7

0000000000000000

0000010010000000

0000010001000000

0000************

0000010011111111

Look-up table stored in the MLUT

Access
error

A defect

changes

address value

Correct
access

IO

IO

IO

IO

SRAM
Defect in MLUT

Interconnect
Defect between MLUTs

62

7.2 Field-Aging-caused Reliability Issue

When the MPLD works in the field for a long term or under a severe environment,

various aging phenomena such as HCI (hot carrier injection) and BTI (bias temperature

instability) [50][51] would cause delay degradation that threatens the long-term reliability

[52] of the MPLD. As described in Chapter 6, the MPLD is composed of a large number

of MLUTs arranged in an array, and each MLUT is placed independently in the MPLD.

During the operation of the MPLD, as shown in Figure 7.3, it is considered that the

progress of the aging at each single MLUT is different. When configuring a logic circuit

into the MPLD, the progress of aging at the often-used MLUTs would be faster which

causes more extra delay. As the aging progresses, the variety of aging-induced delays at

MLUTs would affect the performance of the configured logic circuit, and even worse, the

delay at the MLUTs with faster aging progression could cause a sudden system failure.

Figure 7.3 Aging progresses in MPLD.

In an MLUT, the two main components are vulnerable to the aging phenomena: the

SRAM and the ATD circuit. The aging phenomena like BTI crucially impacts SRAM,

which can degrade the static noise margin (SNM: a critical reliability metric for SRAM)

and lead to read stability issues and potentially cause failure [54]. For the aging effects in

the SRAMs of each MLUT, such as read/write delay, existing memory delay testing

methods can be employed to detect it during the memory operation mode of the MPLD,

which will not be described in more specific detail in this study. Therefore, this study

focuses on the aging effects occurring in the ATD logic for each MLUT.

Aging Effect in Address Transition Detector (ATD) Circuit

As described in Section 6.1.3 of Chapter 6, in each MLUT, the asynchronous

IO

IO

IO

IO

A
g

in
g

 P
ro

g
re

s
s

io
n

Fast

Slow

63

SRAMs use the ATD circuit to at high speed detect the input address change to execute

asynchronous operations. The ATD circuit is extremely sensitive to the delay variation.

The aging phenomena like HCI and BTI would increase the threshold voltage of the

transistors in the ATD circuit, which could slow down the switching speed [53] and might

cause false detection of the address change.

As demonstrated in Figure 7.4, the ATD circuit will generate an atdpulse signal once

detected any value changes in the address inputs (A0:3) of MLUT and switches A0:3 to the

address inputs (a10:3) of the asynchronous SRAM1. Suppose that 01010 is applied to A0

at time t0t1t2t3t4, respectively. When a transition occurs at A0, the ATD must detect the

value change and transfer the transition to a10 in a very short delay. Aging-induced delay

at the ATD logic would generate an anomalous atdpulse signal to switch the A0 to a10,

which causes false detections for the A0 at t2, t4 and result in a10 being 01111 at t0t1t2t3t4.

Figure 7.4 Aging caused ATD detection error.

7.3 Conclusions

In the production phase of the MPLD, there would be many kinds of defects exist in

the SRAM memory of the MLUT. For these memory defects, conventional memory

testing methods are available. On the other hand, there would also be lots of defects

between MLUTs, especially the interconnect defect on the logic address input lines and

logic data output lines, such as short, bridge, and open circuits, these defects would cause

significant yield loss and reliability degradation.

In addition, when the MPLD works in the field, various aging phenomena such as

the HCI, and BTI, would cause aging-induced delays in the MLUTs array of the MPLD.

A0

A2

A3

A1

a12

a13

a11

Address Input Switching

a10

Address Change Detection Address Output Switching

atdin_en atdpulse

atdce_n

atdclk

D-latch D-FF
Constant Delay

SRAM1

16word 8bit
(Asynchronous)

A0

atdpulse

Correct detection Incorrect detection

Aging

cause ATD

slow down

64

The aging progress in the MLUTs array should be different. The often-used MLUTs

would have a faster aging speed which means the aging-induce delay would be large. The

variations of aging-induce delay would affect the performance of configured logic circuits

and even cause a system failure, which would threaten the in-field reliability of the device.

Therefore, from this chapter, two important items can be put forward:

To guarantee the long-term reliability of the MPLD, the

1) During the production phase, it is necessary to perform high-quality tests for the

interconnect defects on the logic address input lines and logic data output lines of the

MLUTs.

2) In the field use phase, it is necessary to employ an aging monitoring approach to

measure the aging-induced delay variations in the MLUTs.

To address the above two items, a test method for identifying interconnect defects

is proposed in Chapter 8. A delay monitoring method to measure the aging-induced delay

of the MLUTs is proposed in Chapter 9.

65

Chapter 8

8. Interconnect Defect Test for MPLD

In order to improve the yield and guarantee the reliability of the MPLD device,

extensive production tests with high quality are required to detect as many manufacturing

defects as possible that exist in the SRAMs and the AD interconnects between MLUTs.

The former defects can be tested by conducting the existing test technologies of SRAM

memory [55][56]. For the latter, we have analyzed the interconnect fault models including

the stuck-at faults and bridge faults at the AD interconnects between the MLUTs, and

proposed the test approaches for detecting the stuck-at fault and bridge fault, in [57][58].

Besides fault detection, fault diagnosis is also known to play an important role in

improving the yield and reliability of products. In manufacturing, identifying the location

of the interconnect faults in the MLUTs array is beneficial to improving the process. In

addition, when the MLRD is put to actual use in the field, identifying the interconnect

fault is helpful to avoid configuring the logic into a faulty MLUT block for high reliability.

The fault diagnosis for locating the interconnect fault in the FPGA device has been

investigated deeply [59][60]. In [61] a universal fault diagnosis technique is presented for

locating the interconnect fault in the CLBs array of an FPGA device. This method can

identify all faulty points in the CLBs array through two steps: the horizontal diagnosis

and the vertical diagnosis. For the MPLD device constructed by the MLUTs array, the

basic idea presented in [61] would be also available to identify the AD interconnect faults

between the MLUTs. However, implementing the horizontal and vertical diagnosis in

MPLD must be considered carefully, because the interconnects between MLUTs are un-

reconfigurable.

This chapter arm to present the test method to identify the AD interconnect faults

between MLUTs of the MPLD device, for improving the manufacturing process and

voiding a faulty MLUT block for high reliability when the MPLD is put to practical use.

The rest of this chapter is organized as follows: Section 8.1 reveal the interconnect

faults models including stuck-at and bridge faults between MLUTs in MPLD. Section 8.2

present the test method to identify the interconnect faults and deals with the generation

of data for testing. Section 8.3 shows the results of the logic simulations for evaluating

the proposed test method. The proposed methods are discussed in Section 8.4. Finally,

Section 8.5 make concludes this chapter.

66

8.1 Interconnect Fault Models in MPLD

This section scrutinizes the two primary types of faults resulting from interconnect

defects between MLUTs, namely stuck faults and bridged faults. These interconnect faults

lead to the alteration of the value of the logic address input of the MLUT, and have the

potential to compromise the normal functioning of the logic circuitry configured in the

MLUT. As a consequence, these interconnect faults may cause the generation of

erroneous logic outputs at the value of the logic data output of the MLUT.

8.1.1 Stuck-at Interconnect Faults

A stuck-at fault that occurs at the AD interconnect between the MLUTs in the MPLD

is referred to as a stuck-at interconnect fault. This type of fault may arise due to the

presence of an interconnect defect such as a short between the ground or supply and the

AD interconnect. As a result of this defect, the logic address input of the MLUT becomes

fixed at either logic 0 or 1, which can significantly impact the normal functional operation

of the MLUT. The presence of a stuck-at interconnect fault could lead to incorrect logic

outputs being produced at the value of the logic data output of the MLUT. This issue, if

left unaddressed, could ultimately cause significant damage or malfunction of the MPLD.

Therefore, it is crucial to promptly identify and resolve any instances of stuck-at

interconnect faults to ensure the continued reliable performance of the MPLD.

Figure 8.1 depicts the behavior of stuck-at interconnect faults, and in the event of a

stuck-at occurring at M1D5→M2A5, the M2A5 value would be fixed to 1 or 0, depending

on whether a stuck-at-1 or stuck-at-0 occurs.

Figure 8.1 Stuck-at interconnect fault models.

8.1.2 Bridge Interconnect Faults

A bridge fault that occurs at the AD interconnect between the MLUTs in the MPLD

is referred to as a bridge interconnect fault. This type of fault may arise due to the presence

of an interconnect defect such as a short between AD interconnects. This defect may result

A4

A5

D5

D4

D4

A4

D5

A5

MLUT2 (M2)

MLUT1 (M1)

A5

A4

D5

D4

M1 M2

Stuck-at-1

VDD Logic behavior of stuck-at-1

Logic behavior of stuck-at-0

M2A5M1D5

00

1/01
Stuck-at-0

A5

A4

D5

D4

M1 M2GND

M2A5M1D5

0/10

11

67

in either a wired-OR (OR-bridge) or wired-AND (AND-bridge) logic function depending

on the utilized logic circuitry. The former is referred to as OR-bridge interconnect fault

and the latter as AND-bridge interconnect fault. An OR-bridge interconnect failure causes

shorted AD interconnects to be OR-ed together, and the output value of the OR-ed is

assigned to each of the shorted AD interconnects. Similarly, an AND-bridge interconnect

failure causes shorted AD interconnects to be AND-ed together, and the output value of

the AND-ed is assigned to each shorted AD interconnect. Therefore, bridge interconnect

faults caused by such an interconnect defect would also change the value of the logic

address input of the MLUT, which also has a significant impact on the normal functional

operation of the MLUT. Therefore, it is also crucial to promptly identify and resolve any

instances of bridge interconnect faults to ensure the continued reliable performance of the

MPLD.

Figure 8.2 demonstrates the behavior of bridge interconnect faults. In the event of a

bridge occurring between M1D5→M2A5 and M1D4→M2A4, an AND-bridge interconnect

fault would cause a faulty value of 0 at M2A5 (M2A4) when M1 outputs logic 1 (0), 0 (1) at

M1D5 and M1D4, respectively. Conversely, an OR-bridge interconnect fault would cause

a faulty value of 1 at M2A5 (M2A4) when M1 outputs logic 0 (1), 1 (0) at M1D5 and M1D4.

Figure 8.2 Bridge interconnect fault models.

8.2 Test Method for Interconnect Faults

In our research presented in [57][58], the test methods were proposed for detecting

both stuck-at and bridge interconnect faults in the MLUT array. These methods were able

to achieve high fault coverage while requiring fewer test configurations for fault detection.

However, identifying the location of faults is crucial for improving the manufacturing

process and ensuring the proper functioning of the MPLD when in practical use, such as

to help the user to void the use of a faulty MLUT block. Therefore, in this study, we aim

to extend the previous test methods proposed in [57][58] to include the identification of

locations of interconnect defects.

M2A4M2A5M1D4M1D5

0000

1/0010

01/001

1111

Logic behavior of AND-bridge

Logic behavior of OR-bridge
A4

A5

D5

D4

D4

A4

D5

A5

M2A4M2A5M1D4M1D5

0000

10/110

0/1101

1111

MLUT2 (M2)

MLUT1 (M1)

OR-bridge

A5

A4

D5

D4

M1 M2

A5

A4

D5

D4

M1 M2

AND-bridge

68

For programmable devices, Prior research on fault localization for FPGAs has been

conducted and is discussed in [59][60][61]. These studies proposed sophisticated methods

for fault localization in FPGAs, with [61] presenting a universal fault diagnosis technique

that can locate interconnect faults for the CLBs array of an FPGA. This method utilized

a two-step horizontal and vertical diagnosis process to locate all faulty points for the

CLBs array. Although the basic idea in [61] is applicable to the MPLD constructed using

the MLUTs array, the interconnects between MLUTs are unconfigurable, unlike FPGAs.

Therefore, careful consideration should be given to implementing the horizontal and

vertical diagnosis in MPLD.

In this study, we present a novel test method for detecting and locating faults caused

by AD interconnect defects, including stuck-at and bridge faults. Our approach is based

on the fault detection idea presented in [57] and the fault localization idea in [61]. By

building on the previous research, we aim to improve fault detection and localization in

MPLDs and contribute to the advancement of manufacturing processes for these devices.

8.2.1 Test Strategy for Fault Detection and Location

Interconnect Fault Detection Idea. Since the logic address inputs of an MLUT come

from the logic data outputs of its neighbor MLUTs, the logic data flow in MPLD expresses

as the following:

external input → [address → data → address → data → …] → external output.

Where the data indicate the data configured in an MLUT, and the address before a

data indicate the logic address inputs of the MLUT that stores the data. A fault at the AD

interconnect can cause a change of the value at the logic address input that would access

a different content of the data configured in the MLUTs and in turn may result in different

output values than fault-free at the logic data outputs of the MLUT, and ultimately, may

produce incorrect values to the external logical output ports of the MPLD. Therefore, the

idea of the test method presented in [57] for detecting the interconnect faults of MPLD,

is to configure the internal test data into the SRAMs of MLUTs, apply the external test

data to external logic input ports, and observe the fault effects at the external logic output

ports of MPLD by performing the logic operation. The two kinds of test data are defined

in [57] as follows.

Definition 8.1 Test cube. the internal test data stored in the SRAMs of MLUT in MPLD,

which can propagate fault excitations and fault effects for AD interconnect faults.

Definition 8.2 External pattern. the external test data applied to the external logic input

ports of MPLD as fault excitations to excite AD interconnect faults.

69

The test data flow in MPLD expresses in the following:

external pattern → [excitations→ test cube → fault → test cube → …] → effects.

Figure 8.3 shows the concept of detecting interconnect faults under this idea. The

test cubes are configured in the memory operation mode. In logic operation mode, the

configured test cubes propagate the external patterns (fault excitations) applied to external

logic input ports to excite the interconnect faults and propagate the fault effects to external

logic output ports. At the external logic output ports, the fault effects can be observed,

and the faults are detected.

Figure 8.3 Interconnect fault detection idea.

The critical point of this test idea is to generate test cubes and external patterns. In

[57], The test generations of the test cubes and external patterns for detecting stuck-at

interconnect faults and bridge interconnect faults have been presented. In the presented

test generations, the test generations for the stuck-at interconnect faults can detect all the

stuck-at faults. However, at that time, the test generations for bridge interconnect faults

did not consider detecting all bridge interconnect faults; in order to consider any bridge

fault interconnects, also based on this test idea, in [58], the additional test generations

were presented to cover the detecting of the bridge interconnect faults that were not

detected in [57].

This study aims to present novel test generations for test cubes and external patterns,

which can not only detect but also locate the interconnect faults, the idea of locating

Test

Cube

Test

Cube

Test

Cube

Test

Cube

Test

Cube

Test

Cube

Test

Cube

Test

Cube

Test

Cube

Test

Cube

Test

Cube

Test

Cube

Fault
Effect

External Pattern
External Output

Fault

70

interconnect faults are as follows.

Interconnect Fault Location Idea. For fault location of programmable devices, [61]

presented a universal fault diagnosis technique that can locate interconnect faults on the

CLBs array of an FPGA. The basic idea of this method is to utilize a two-step diagnosis

process, step 1 for horizontal diagnosis and step 2 for vertical diagnosis, to locate the

faulty CLBs in the array. Figure 8.4 shows this universal diagnosis procedure.

Figure 8.4 A universal diagnosis procedure for FPGA [61].

In this diagnosis procedure, the interconnect structures are specially configured. In

the horizontal (vertical) diagnosis, for the CLBs in a row (column), the output line of each

CLB except the last one is configured to connect with an appropriate input line of the

CLB following it; the output line of the last CLB is configured to connect with an I/O

block as the primary output for output sequence observing; the other input lines of each

CLB are configured to connect with the remaining I/O blocks as the primary inputs for

input sequence applying.

By applying the input sequence to the primary inputs at I/O blocks to perform

respectively the horizontal and vertical diagnosis to the CLBs array, horizontally and

vertically to propagate the fault, the faulty CLB can be located by observing the output

sequences from the primary outputs at the I/O blocks.

This diagnosis method provides an applicable basic idea to locate the interconnect

faults for the MPLD constructed using the MLUTs array, however, the interconnects

between MLUTs are unconfigurable, unlike FPGAs. Therefore, careful consideration

should be given to implementing the horizontal and vertical diagnosis in MPLD. The test

strategy for locating the interconnect faults in MPLD is described as follows.

Test Strategy for Interconnect Fault Location The main idea for identifying an

Input sequence

Error

(a) Step 1, horizontal diagnosis. (b) Step 2, vertical diagnosis.

Input sequence

Error

Faulty CLB
Output

sequence

Output

sequence

71

interconnect fault between MLUTs is to create the proper paths on the MLUTs array

which can propagate the fault effect across the MLUTs array to the expected logic output

ports of the MPLD for fault localization. Since the interconnects between MLUTs are not

configurable like FPGAs, it is impossible to directly configure the connections between

the interconnect and any specified MLUT or any specified external port. Therefore, to

create proper propagation paths, an optimal way is to take full advantage of these MLUTs,

since they are reconfigurable, to realize proper propagation paths by configuring each

MLUT with the logic function that can properly route the fault effects on the logic address

inputs to the expected logic data outputs. The routing logic in each MLUT navigates the

propagating of fault effects like a map, as defined in the following.

Definition 8.3 Rout map. a logic function configured in the MLUT that can properly

propagate the fault effects on the logic address inputs to the expected logic data outputs.

A simple type of rout map is the wiring logic. For an MLUT with m-pair AD

interconnects (m-bit logic address inputs and m-bit logic data outputs), there are mPm = m!

kinds of wiring patterns to connect the address inputs with the data outputs. Therefore,

the number Nrm of the wiring-type route map for the MLUT with m-pair AD interconnects

can be expressed as the following equation.

Nrm(m) = mPm = m! (8.1)

Figure 8.5 shows all 24 route maps to create the data paths between the address

inputs and data outputs of an MLUT with 4-pair AD interconnects. Where the labeled 1,

2, and 3 are referred to as horizontal, vertical, and diagonal route maps, respectively. By

implementing these route maps as test cubes configured into the SRAMs of the MLUTs,

the test procedure can be realized to locate the AD interconnect faults in MPLD, like the

horizontal and vertical diagnosis processes for FPGAs proposed in [61].

Figure 8.5 Route maps for an MLUT with 4-pair AD interconnects.

Figure 8.6 shows the testing mechanism under route maps to locate an interconnect

fault. The (a) and (b) represent the testing under the horizontal route map and vertical

route map, respectively. From these two testing processes, we can observe the fault effect

from two different external output ports, and obtain two different fault propagation paths,

1

2

3

72

FP(1) and FP(2). Via the intersection of obtained fault propagation paths, the fault location

can be identified.

Figure 8.6 Testing mechanisms under route maps to locate an interconnect fault.

For the stuck-at faults in any AD interconnects of the MLUTs array, configuring

either the horizontal route map or the vertical route map into the MLUTs would detect all

faults and identify the location of the faults by configuring the two maps in order. For the

bridge faults, an additional diagonal route map is considered necessary. The procedure of

the proposed test method based on the route map is as follows.

Test Procedure
Definitions:

• Nrm: number of route maps, it can be calculated by equation 8.1.

• rmi: route map i; i∈ [1, Nrm].
• TC(i): test cubes implementing rmi.

• NFE
(i): number of observed fault effects under rmi.

• FPk
(i): fault propagation path k obtained under rmi; k∈ [1, NFE

(i)].

• FP(i): fault propagation path set under rmi.

• Floc: fault location

Process:

(1) Test under rmi for i∈ [1, Nrm]:

(a) Configure TC(i) into each MLUT to create rmi.

(b) Apply external patterns to the input ports of MPLD.

(c) Observe fault effects. If NFE
(1) == 0, end testing (fault-free).

(d) Obtain the fault propagation path set:

FP(i) = ⋃ FPk

(i)NFE
(i)

k=1 (8.2)

(2) Identify fault location:

Floc = ⋂ FP(i)Nrm

i=1 (8.3)

The next section presents the test generation of the test cubes (TC(i) for rmi) and the

test generation of the external patterns for exciting stuck-at and bridge faults.

8.2.2 Test Generation

Test generation of test cubes for implementing route maps Since the MLUT can be

Fault
Effect

Fault
Effect

FP(1) FP(2)
(a) (b)

73

allowed to arbitrarily configure the logic by designing and storing the corresponding truth

tables in SRAMs of the MLUT, the test generation of the test cube for implementing the

route map to an MLUT is to design the corresponding truth tables that can be stored in

the SRAMs of the MLUT and are capable of representing the route map. For an MLUT

with m pairs of AD interconnects (A[m-1:0], D[m-1:0]) and constructed by four 2m/2word×m-

bit size SRAMs, the test cubes, for implementing the horizontal, vertical, and diagonal

route maps, are generated as follows.

Where TC(1), TC(2), and TC(3) indicate the test cubes that implement the horizontal,

vertical, and diagonal route maps, respectively; and rm1, rm2, and rm3 indicate the

horizontal, vertical, and diagonal route maps, respectively. Each test cube consists of two

truth tables, truth table 1, and truth table 2, to create the route of the address inputs Am/2-

1:0 and Am-1:m/2 of the MLUT, respectively.

Test cube generation

[TC(1) for rm1]

truth table 1: For the SRAMs to share the low-order address inputs (A[m/2-1:0]) of an MLUT,

set the contents of the address lines A[m/2-1:0] to

D[m-1:m/2] = A[0:m/2-1],

D[m/2-1:0] = all-0.

truth table 2: For the SRAMs to share the high-order address inputs (A[m-1:m/2]) of an MLUT,

set the contents of the address lines A[m-1:m/2] to

D[m-1:m/2] = all-0,

D[m/2-1:0] = A[m/2:m-1].

[TC(2) for rm2]

truth table 1: For the SRAMs to share the low-order address inputs (A[m/2-1:0]) of an MLUT,

set the contents of the address lines A[m/2-1:0] to

D[m-1:m/2] = all-0,

D[m/2-1:0] = A[0:m/2-1].

truth table 2: For the SRAMs to share the high-order address inputs (A[m-1:m/2]) of an MLUT,

set the contents of the address lines A[m-1:m/2] to

D[m-1:m/2] = A[m/2:m-1],

D[m/2-1:0] = all-0.

[TC(3) for rm3]

truth table 1: For the SRAMs to share the low-order address inputs (A[m/2-1:0]) of an MLUT,

set the contents of the address lines A[m/2-1:0] to

D[m-1:m/2] = A[m/4:m/2-1] : A[0:m/4-1],

D[m/2-1:0] = all-0.

truth Table 2: For the SRAMs to share the high-order address inputs (A[m-1:m/2]) of an MLUT,

set the contents of the address lines A[m-1:m/2] to

D[m-1:m/2] = all-0,

D[m/2-1:0] = A[3m/4:m-1] : A[m/2:3m/4-1].

For easier visibility, described above test generation of the test cubes for rm1, rm2,

and rm3 is also tabulated in Table 8.1.

74

Table 8.1 Test cubes to create route maps for the MLUT with m-pair AD interconnects

Route Maps Test Cubes

rm1: horizontal route map TC(1)

truth table 1
Dm-1:m/2 = A0:m/2-1

Dm/2-1:0 = all-0

truth table 2
Dm-1:m/2 = all-0

Dm/2-1:0 = Am/2:m-1

rm2: vertical route map TC(2)

truth table 1
Dm-1:m/2 = all-0

Dm/2-1:0 = A0:m/2-1

truth table 2
Dm-1:m/2 = Am/2:m-1

Dm/2-1:0 = all-0

rm3: diagonal route map TC(3)

truth table 1
Dm-1:m/2 = Am/4:m/2-1 : A0:m/4-1

Dm/2-1:0 = all-0

truth table 2
Dm-1:m/2 = all-0

Dm/2-1:0 = A3m/4:m-1 : Am/2:3m/4-1

Figure 8.7 shows an example of the TC(1) configured in asynchronous SRAMs of an

MLUT with 8 pairs of AD interconnects. For each MLUT, we write truth table 1 and truth

table 2 in the SRAM1 and SRAM2, respectively. In truth table 1, the low 4-bit data outputs

D[3:0] for all addresses are all-0, and the high 4-bit data outputs D[7:4] for each address are

A[0:3]. In truth table 2, the high 4-bit data outputs D[7:4] for all addresses are all-0, and the

low 4-bit data outputs D[3:0] for each address are A[4:7]. Because the data outputs D[7:0] of

SRAM1 and SRAM2 are connected by OR function as illustrated in Figure 6.5, the data

outputs D[7:0] of each MLUT are the values of address inputs A[0:7]. i.e. the address line

Ak is connected to the data output line D7-k for each MLUT, thus the construction of the

propagation path of the fault from the horizontal direction is realized.

Figure 8.7 Example of test cube in the MLUT for horizontal route map.

Figure 8.8 shows an example of TC(2) configured in asynchronous SRAMs of an

MLUT with 8 pairs of AD interconnects. Where, the data outputs D[7:0] for all addresses

are [0000A0A1A2A3] and [A4A5A6A70000] for SRAM1 and SRAM2, respectively. i.e. for

each MLUT, the address line Ak in the low 4-bit address (k =0, 1, 2, 3) is connected to the

Truth table1 Truth table2
DataAddress

D0D1D2D3D7~D4A4A5A6A7

0000

0

0000

00011000

00100100

11111111

DataAddress

D3~D0D4D5D6D7A0A1A2A3

0

00000000

00011000

00100100

11111111

A1

D1

A0

D0

A3

D3

A2

D2

D6

A6

D7

A7

D4

A4

D5

A5

SRAM1 SRAM2

SRAM3 SRAM4

A1

D1

A0

D0

A3

D3

A2

D2

D6

A6

D7

A7

D4

A4

D5

A5

75

data output line D7-(k+4) and the address line Ak in the high 4-bit address (k = 4, 5, 6, 7) is

connected to the data output line D7-(k-4), thus the propagation path of the fault from the

vertical direction is created.

Figure 8.8 Example of test cube in the MLUT for vertical route map.

Figure 8.9 shows an example of TC(3) configured in asynchronous SRAMs of an

MLUT with 8 pairs of AD interconnects. For each MLUT, the address line Ak for k = 0,

1, 4, 5 is connected to the data output line D7-(k+2), for k = 2, 3, 6, 7, to D7-(k-2), thus the

propagation path of the fault from the diagonal direction is created.

Figure 8.9 Example of test cube in the MLUT for diagonal route map.

Test generation of external patterns for exciting AD interconnect facts Since the

conditions of fault excitation are different for different types of AD interconnect faults, it

is necessary to consider different external patterns to excite different target faults at AD

interconnect faults in MPLD. The conditions of fault excitation for different types of AD

Truth table1 Truth table2

A1

D1

A0

D0

A3

D3

A2

D2

D6

A6

D7

A7

D4

A4

D5

A5

SRAM1 SRAM2

SRAM3 SRAM4

DataAddress

D3~D0D4D5D6D7A4A5A6A7

0

00000000

00011000

00100100

11111111

DataAddress

D0D1D2D3D7~D4A0A1A2A3

0000

0

0000

00011000

00100100

11111111

A1

D1

A0

D0

A3

D3

A2

D2

D6

A6

D7

A7

D4

A4

D5

A5

Truth table1 Truth table2

A1

D1

A0

D0

A3

D3

A2

D2

D6

A6

D7

A7

D4

A4

D5

A5

SRAM1 SRAM2

SRAM3 SRAM4

A1

D1

A0

D0

A3

D3

A2

D2

D6

A6

D7

A7

D4

A4

D5

A5

DataAddress

D0D1D2D3D7~D4A4A5A6A7

0000

0

0000

01001000

10000100

11111111

DataAddress

D3~D0D4D5D6D7A0A1A2A3

0

00000000

01001000

10000100

11111111

76

interconnect faults are listed as the following.

⁕ Stuck-at-1 (stuck-at-0) interconnect fault excitation condition is that the value 0 (1)

must be assigned to the interconnect fixed at 1 (0).

⁕ AND-bridge (and OR-bridge) interconnect fault excitation condition is that the two

values 01 or 10 must be assigned to the two interconnects bridged.

Based on the above fault excitation conditions, as shown in Table 8.2, four external

patterns are applied to the external input ports of MPLD to excite the AD interconnect

faults and are defined as follows.

Table 8.2 External test patterns applied to external inputs of MPLD

Fault Types External Test Patterns

stuck-at-1 all-zero vector: [0…0]

stuck-at-0 all-one vector: [1…1]

AND-bridge walking-zero vector: [1…10⃗ 1…1]

OR-bridge walking-one vector: [0…01⃗ 0…0]

Definition 8.4 All-1/0 vector. A sequence of binary values where all elements are 1/0.

Definition 8.5 Walking-1/0 vector. A sequence of binary values where a single 0/1

“walks” through a series of 1s/0s.

The all-zero (all-one) vector is used to excite the stuck-at-1 (stuck-at-0) interconnect

fault and the walking-zero vector (walking-one vector) vector is used to excite the AND-

bridge (OR-bridge) interconnect fault. Where the sequence length of each vector is equal

to the number of logic input ports of MPLD, i.e., depends on the size of the MLUTs array.

Figure 8.10 shows the mechanisms of applying external patterns. The (a), (b), (c),

(d) show detect a stuck-at-1, stuck-at-0, AND-bridge, and OR-bridge fault, respectively.

Figure 8.10 Applying mechanisms of external patterns.

Figure 8.11 and Figure 8.12 show the example of applying the all-zero vector and

the walking-zero vector to excite a stuck-at-1 (sa1) and AND-bridge (ANDbd)

interconnect fault in an MPLD with 2×2 MLUTs array, respectively. Figures (a) and (b)

show the test under rm1 and rm2. The rm1 and rm2 are respectively created by TC(1) and

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(a)

Fault-free Faulty

(b)

1

1

1

1

1

1

1

1

Fault-free Faulty

MPLD

MPLD

External

Output

External

Output

External

Input

External

Input

1

1

1

1

0

1

1

1

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

(d)

Fault-free Faulty

(c)

1

1

1

1

0

1

1

1

Fault-free Faulty

MPLD

MPLD

External

Output

External

Output

External

Input

External

Input

1

1

0

1

0

1

1

1

0

0

1

0

1

0

0

0

0

0

0

0

1

0

0

0

1

1

1

1

0

1

1

1

All-0

All-1

Walking-0

Walking-1

77

TC(2) stored in SRAMs to propagate the fault effect along with the horizontal and vertical

routes. When applying the all-zero(walking-zero) vector to the external inputs, the

sa1(ANDbd) fault is excited, and the fault effect(s) 1(0s) will be propagated to the external

output ports for observation. As shown in the figures, the route that reaches the external

output ports is individual; we can thus obtain the fault propagation path set on both the

rm1 and rm2: FP(1) and FP(2), by observing the fault effects mapped on the external output

ports. We can locate the fault by equation 8.2, and equation 8.3:

Floc = FP(1) ∩ FP(2) (for the ANDbd, FP(1) = ⋃ FPk
(1)2

k=1 , FP(2) = ⋃ FPk
(2)2

k=1).

Figure 8.11 Apply all-zero to excite stuck-at-1 fault.

Figure 8.12 Apply walking-zero to excite AND-bridge fault.

8.3 Simulation Results

To verify the proposed test method, we performed logic simulations using ModelSim

by injecting fault nodes to the netlist of the MPLD we designed.

sa1

Fault

Effect
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0 0

0 0

0 0

0 0

all-zero

(a)

 ()

all-zero

sa1

Fault

Effect

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0 0

0 0

0 0

0 1

(b)

 ()

ANDbd

Fault

Effect
0

1
1

1
1

0
1

1
1

1

1
1

1
1

1
1

1 1

1 1

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1 1

1 1

walking-zero

Fault Effect

(a)

()

()

walking-zero

ANDbd

Fault

Effect

1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1
1

1
1

1
1

1 0

1 1

0 0

0 0
Fault

Effect

(b)

()

()

78

The designed MPLD has 36 MLUTs arranged in a 6×6 array as shown in Figure

8.13. Its external logic IO ports include 48bit left/right IOs: li[47:0], lo[47:0], ri[47:0],

ro[47:0] and 20bit top/bottom IOs: ti[19:0], to[19:0], bi[19:0], bo[19:0]. Each MLUT

has 16-pair AD interconnects (A15:0, D15:0) and consists of four 256word×16-bit SRAMs

including two asynchronous SRAMs: SRAM1, SRAM2, two synchronous SRAMs:

SRAM3, SRAM4.

Figure 8.13 MPLD with 6×6 MLUTs array.

The processes of performing logic simulations are as the following.

1: We injected a stuck-at-0 (sa0) fault at x2y1A2 (address line A2 of MLUT x2y1) and

an OR-bridge (ORbd) fault between x4y2A1 and x4y4A3.

2: In the memory operation mode of the MPLD, we configured the test cubes into

SRAMs of each MLUT to create the route maps.

3: In the logic operation mode, we applied external test patterns all-one(walking-

one) vector to external logic input ports (li, ri, ti, bi) to excite the injected sa0(ORbd) fault.

4: We observed the fault effects at external output ports (lo, ro, to, bo) and located

fault location through the fault propagation paths of the observed fault effects.

8.3.1 Verification of Testing to Stuck-at Interconnect Faults

The simulation results of testing the sa0 fault under the rm1(rm2) are shown in Figure

8.14(Figure 8.15). Before we enable the fault injection sa_fltinj_en (=0), the MPLD is

fault-free, and its output ports are all-1. When enabling sa_fltinj_en (=1), x2y1A2 is fixed

Top IO ports: ti[19:0], to[19:0]

L
e

ft
 I
O

 p
o

rt
s

:
li

[4
7

:0
],

 l
o

[4
7

:0
]

R
ig

h
t

IO
 p

o
rt

s
:

ri
[4

7
:0

],
 r

o
[4

7
:0

]

x0y0 x2y0

Bottom IO ports: bi[19:0], bo[19:0]

x1y5 x3y5

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5
AD6
AD7

AD9

AD4

AD8

AD5
AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

x4y0

x5y5

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5
AD6
AD7

AD9

AD4

AD8

AD5
AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD13 AD2

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5
AD6
AD7

AD9

AD4

AD8

AD5
AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD13 AD2

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD12 AD3 AD12 AD3

x2y5

x3y0

x4y5

x5y0x1y0

x1y1

x1y2

x1y3

x1y4

x2y1
x3y1

x2y2
x3y2

x2y3
x3y3

x2y4
x3y4

x4y1
x5y1

x4y2

x5y2
x4y3

x5y3

x4y4
x5y4

x0y1

x0y2

x0y3

x0y4

x0y5

A2D2

A1D1
ORbd

sa0

A3D3

79

to 0 and the value 0 of the fault effect is propagated along the horizontal(vertical) route

to the port ro[6](bo[14]) (=0). The sa0 propagation path set on the rm1 and rm2, FP(1) and

FP(2), can be determined:

FP(1) = { li[10] → x1y0A13 → x2y1A2 → x3y0A13 → x4y1A2 → x5y0A13 → ro[6]},

FP(2) = { ti[14] → x1y0A5 → x2y1A2 → x1y1A5 → x2y2A2 → x1y2A5 → x2y3A2 → x1y3A5

→ x2y4A2 → x1y4A5 → x2y5A2 → x1y5A5 → bo[14] }.

The sa0 can be located:

Floc = ⋂ FP(i)2
i=1 = FP(1) ∩ FP(2) = x2y1A2.

Figure 8.14 Simulation result of the test under rm1 for sa0.

Figure 8.15 Simulation result of the test under rm2 for sa0.

8.3.2 Verification of Testing to Bridge Interconnect Faults

The simulation results of testing the ORbd fault under the rm1(rm2) are shown in

Figure 8.16(Figure 8.17). A bridge fault is injected into the MLUT array by setting

bd_fltinj_en to 1. The x4y2A1 and x4y4A3 are bridged by the OR logic function:

x4y4A3
(0→1) = x4y2A1

(=1) = x4y2A1
(=1) ⋁ x4y4A3

(=0) = 1.

The fault effect value 1s are propagated along horizontal(vertical) route to respectively

the port ro[13] and ro[31](bo[5] and bo[7]) (=1). The ORbd propagation paths can be

80

obtained:

FP1
(1)

 = { li[17] → x1y1A14 → x2y2A1 → x3y1A14 → x4y2A1 → x5y1A14 → ro[13] },

FP2
(1)

 = { li[35] → x1y3A12 → x2y4A3 → x3y3A12 → x4y4A3 → x5y3A12 → ro[31] },

FP1
(2)

 = { ti[5] → x3y0A6 → x4y1A1 → x3y1A6 → x4y2A1 → x3y2A6 → x4y3A1 → x3y3A6

→ x4y4A1 → x3y4A6 → x4y5A1 → x3y5A6 → bo[5] },

FP2
(2)

= { ti[7] → x3y0A4 → x4y1A3 → x3y1A4 → x4y2A3 → x3y2A4 → x4y3A3 → x3y3A4

→ x4y4A3 → x3y4A4 → x4y5A3 → x3y5A4 → bo[7] }.

The ORbd can be identified as:

Floc = ⋂ FP(i)2
i=1 = ⋂ (⋃ FPk

(i)2
k=1)2

i=1 = (FP1
(1)
 ∪ FP2

(1)
) ∩ (FP1

(2)
 ∪ FP2

(2)
) =

{ x4y2A1, x4y4A3 }.

Figure 8.16 Simulation result of the test under rm1 for ORbd.

Figure 8.17 Simulation result of the test under rm2 for ORbd.

8.4 Discussion

8.4.1 Test Effectivity for Interconnect Faults

The proposed test method can detect and locate all single interconnect faults at any

81

AD interconnects. Table 8.3 shows the test effectivity to an MPLD with the size of x×y

MLUTs (having m-pair AD interconnects) array. For each type of fault, the most number

of fault lines that might exist in the MPLD is ((x+1)y + (x-1)/2)m, and all can be located

by the proposed test method. Locating the stuck-at (sa) fault only requires two-time

reconfigurations (config.) and external test patterns (EP); for the bridge (bd) fault, it only

involves two-time or three-time (depending on the location distribution of the two bridged

interconnects).

Table 8.3 Test effectivity for all single AD interconnect faults.

MPLD size locatable (=total) fault numbers config. (times) EP (times)

MLUT:x×y

AD-pair: m
((x+1)y+

x-1

2
)m

sa bd sa bd

2 2 or 3 2 2 or 3

8.4.2 Time Complexity of the Test Procedure

The time complexity of the test is O(Nmlut), where Nmlut denotes the

number of MLUTs in the MPLD. The test procedure includes two phases:

1) Configuration phase: Write test cubes into memory to configure the test

route map (routing logic) in memory operation mode.

2) Logic phase: Run the configured logic by applying test patterns to the

external logic input ports in logic operation mode.

Let tconf denote the time to configure the test cube into an MLUT, and

tlogic denote the time to run the configured logic. Nrm represents the number

of route maps (for stuck-at fault Nrm =2, for bridge fault Nrm = 2 or 3).

For an MPLD with Nmlut MLUTs, the total test time is:

ttest = (Nmlut×tconf + tlogic) × Nrm

Since time tconf and tlogic depend on the memory access speed, which is

common for all MLUTs, the total testing time is determined by the size of

the MLUTs array. Therefore, the time complexity of the test is O(Nmlut).

8.4.3 Test Availability for Multiple Interconnect Fault

The proposed test method is available for multiple faults at the AD interconnects.

Definition 8.5 N-faults. N faults, which exist at the different AD interconnects on

the MLUT array, where N > 1.

Testing mechanisms of multiple faults:

82

Let, the range of the multiple AD interconnect faults that occur be NF
R, the number

of faults in the range NF
R be NF, and the number of faulty effects observed on the testing

under the route map i is denoted by NFE
(i), where i = 1, 2, 3, …, denote the horizontal route

map, vertical route map, diagonal route map, ..., respectively.

For N-faults existing at any site on the MLUT array, the fault range can be

determined by the following equation:

NF∈NF
R = [max(NFE

(1), NFE
(2)), NFE

(1)×NFE
(2)] (8.4)

And they can be detected and located by executing i-times tests with i route maps

until the following equation holds.

NF = 𝑁
⋂ FP(i)Nrm

i=1
 , if max(NFE

(1), ⋯, NFE
(i)) == N

⋂ FP(i)Nrm
i=1

 (8.5)

Floc = ⋂ FP(i)Nrm

i=1 , if max(NFE
(1), ⋯, NFE

(i)) == N
⋂ FP(i)Nrm

i=1
 (8.6)

For an instance: to identify 3-faults (stack-at-1) at interconnect A, B, and C on the

MLUT, as shown in Figure 8.18.

Figure 8.18 Example to identify multiple faults.

By executing the test under two route maps (1: horizontal route map, 2: vertical

route map), we can determine the range NF
R of the number of multiple faults NF:

NFE
(1) = 2,

NFE
(2) = 2,

max(NFE
(1), NFE

(2)) = 2,

NF∈NF
R = [max(NFE

(1), NFE
(2)), NFE

(1)×NFE
(2)] = [2,4],

FP
(1) = ⋃ FPk

(1)

NFE
(1)

k=1 = FP1
(1)
∪FP2

(1)
 = {A,B}∪{C,D} = {A,B,C,D},

FP
(2) = ⋃ FPk

(2)NFE
(2)

k=1 = FP1
(2)
∪FP2

(2)
 = {A,C}∪{D,B} = {A,B,C,D},

⋂ FP(i)2
i=1 = FP

(1)∩FP
(2)= {A,B,C,D}.

Since the

(max(NFE
(1),NFE

(2)) = 2) ≠ (𝑁
⋂ FP(i)2

i=1
 = 4),

(a) Test under route map 1

D

A

C

B

E

F

G

FP1
(1)

FP2
(1)

0
0
0
0
0
0
0
1

1
0
0
0
0
0
0
0

(b) Test under route map 2

D

A

C

B

E

F

G

FP1
(2) FP2

(2)

0
0
0
0
0
0
0
1

1
0
0
0
0
0
0
0

(c) Test under route map 3

D

A

C

B

E

F

G

FP1
(3) FP2

(3)

FP3
(3)

0
0
0
0
0
0
0
1

1
0
0
0
1
0
0
0

83

we need to perform the test using route map 3 (diagonal route map):

NFE
(3) = 3,

max(NFE
(1), NFE

(2),NFE
(3)) = 3,

FP
(3) = ⋃ FPk

(3)NFE
(3)

k=1 = FP1
(3)
∪FP2

(3)
∪FP3

(3)
 = {A,G}∪{E,B}∪{F,C} =

{A,B,C,E,F,G}.

⋂ FP(i)3
i=1 = FP

(1)∩FP
(2)∩FP

(3) = {A,B,C,D} ∩{A,B,C,E,F,G} = {A,B,C}.

Then, the

(max(NFE
(1),NFE

(2),NFE
(3)) = 3) == (𝑁

⋂ FP(i)3
i=1

 = 3),

we can determine the number of multiple faults and fault locations:

NF = N⋂ FP(3)3
i=1

 = 3,

Floc = ⋂ FP(i)3
i=1 = {A,B,C}.

8.5 Conclusions

In order to improve the yield and guarantee the reliability of the MPLD device, in

manufacturing the MPLD, identifying the AD interconnect faults in the MLUTs array is

beneficial to improving the process. In addition, when the MPLD is put to actual use in

the field, identifying the AD interconnect faults is helpful to avoid configuring the logic

into a faulty MLUT block for high reliability.

In this chapter, we proposed a test method to identify the stuck-at and bridge faults

at the AD interconnect between MLUTs of the MPLD device. The proposed test method

consists of two phases: the configuration phase and the logic phase. The configuration

phase creates the route map in the MLUTs array for fault propagation paths by configuring

the pre-generated internal test data into the SRAMs of the MLUTs. The logic phase

applies the pre-generated external test data to the logic external output ports of the MPLD

to excite the target faults, observe the faulty effects at the external logic output ports of

MPLD (fault detection), and obtain the fault propagation path set through the observed

faulty effects (for fault location). The coordinate of the target interconnect fault can be

determined by performing the two phases under route maps. The main contribution of

this test method is to address not only the fault detection but also the fault diagnosis of

MPLD.

To evaluate the proposed test method, we design an MPLD with a 6×6 MLUTs array

and perform the logic simulation experiments by injecting the stuck-at and bridge fault

node to the netlist of the MPLD. The results confirmed the effectiveness of the proposed

test method which can diagnose the location of the injected stuck-at and bridge fault.

84

The proposed test method can detect and locate all single interconnect faults at any

AD interconnects. In addition, it is available for multiple faults at the AD interconnects.

In our future work, we will explore the test generation of the internal test data and

external data to identify other interconnect faults (such as the open fault, etc.) in the

MPLD device, and explore the methods such as the design for testability and built-in self-

test to the MPLD device.

85

Chapter 9

9. Aging monitoring for MPLD

To improve the reliability of the MPLD device, in Chapter 8, we described the test

approaches for identifying the production defects referred to as stuck-at and bridge faults

at the AD interconnects of the MPLD device. On the other hand, when a good MPLD

device is put actual such as the uses of IoT and AI systems for a long time or works in a

severe environment, various aging phenomena such as HCI (Hot carrier injection), BTI

(Bias Temperature Instability) [50], [51] would cause delay degradation that threatens the

in-field reliability [52] of the MPLD.

This chapter aims to present a method to periodically detect the degradation state of

MLUTs in MPLDs operating in the field by monitoring the delay induced by aging.

The rest of this chapter is organized as follows: Section 9.1 points out the necessity

of delay monitoring techniques for improving the in-field reliability of MPLD. Section

9.2 presents the implementation method of the RO-based delay monitor for the MPLD

device. Section 9.3 performs logic simulation to evaluate the proposed methods. Section

9.4 discuss the proposed methods. Finally, the chapter concludes in Section 9.5.

9.1 Delay-Monitoring technologies

This section points out the necessity of delay monitoring techniques for improving

the in-field reliability of MPLD.

Conventionally, the aging-induced extra delay can be relaxed by manufacturing tests

(burn-in tests or stress tests), redundancy design, or by setting a certain timing margin in

the operating frequency of the device at the design phase [62], [63]. However, it is

difficult to optimize the timing margin for a device due to the variations in the fabrication

process, workload, and operational environment. And there is a pessimistic prediction that

the timing margin usually results in performance sacrifice although it can improve the

reliability of the device [63].

For an MPLD device, it is composed of a large number of MLUT arranged in an

array. During the operation, the progress of the aging at each single MLUT is different.

When configuring a logic circuit into MPLD, the progress of aging at the often-used

MLUTs would be faster which causes more extra delay. The variety of the aging-induced

delay at MLUTs would affect the performance of the constructed logic circuit.

86

Commonly, a certain timing margin is pre-designed in the operating frequency of

the MPLD device could cover the aging-induced delay of the MLUTs during most

lifetimes. However, as the aging progresses, the delay at the MLUTs with faster aging

progression would exceed the timing margin earlier which could cause a sudden system

failure. On the other hand, it is getting difficult to design the timing margin for a device

due to the variations in the fabrication process, workload, and operational environment.

Delay-monitoring techniques [62], [64] are one of the effective ways to ensure the

in-filed reliability of the device, they can measure the delay variation of the circuit

affected by the process, voltage, temperature (PVT) in real-time by implementing some

special timing-measurement circuits such as the RO (Ring oscillator) [65], TDC (time-

to-digital converter) [66] into the target device. Figure 9.1 shows the concept of delay

monitoring. The delay of the device is measured periodically during the in-filed operation.

When the delay value is getting exceed the timing margin (or a safe delay boundary), an

early warning/report can be issued to the upper system to avoid a system failure or call

for maintenance like repair/diagnosis.

Figure 9.1 Concept of delay monitoring techniques.

Therefore, it is necessary to the delay monitoring techniques for improving the in-

field reliability of MPLD.

9.2 Delay Monitoring in MPLD

This section presents the implementation method of the RO-based delay monitor for

the MPLD device.

RO is commonly used as a sensor to monitor the delay variation of a circuit affected

C
ir

c
u

it
 d

e
la

y

System operating time

Allowable delay boundary

Warning/Repair

/Failure avoidance

Failure

Delay monitoring

(Aging detection)

87

by temperature, voltage, process, or aging on the circuit. To measure the delay of a circuit,

it is effective to implement a RO in the device. In [67][68], the authors proposed an on-

chip digital delay sensor using ROs to monitor the aging-induced delay of application-

specific integrated circuit (ASIC) devices. Additionally, in [69], the authors integrated the

on-chip digital delay sensor into the field-programmable gate array (FPGA) with the goal

of enhancing the reliability of logic reconfigurable devices. As a result, we incorporate

ROs into MPLDs for delay monitoring purposes.

9.2.1 Ring Oscillator (RO)

Figure 9.2 shows a general RO structure, a ring circuit composed of a 2-input NAND

gate in series with an even number of inverters. One of the inputs of NAND is the

oscillation control signal EN. While setting EN to 0, the RO is initial to a stable state;

when setting EN to 1, the RO operates in the oscillation mode and generates an oscillation

signal at a specific frequency. The delay (transmission time) DRO of RO’s entire ring

routing path is half of the oscillation period TRO of RO; we can calculate it through the

oscillation number Nosc
tRO within a certain oscillation operation time tRO:

DRO =
TRO

2
 =

tRO

2Nosc
tRO

 (9.1)

Figure 9.2 Ring oscillator.

9.2.2 Delay Monitor Design Using RO

In MPLD, we can deploy RO into specified measurement areas (partial MLUTs or

all MLUTs) to measure the average delay (local delay or global delay) of MLUTs within

the area.

Deploy RO in MLUTs:

We first specify the measurement area (MLUTs to be measured for the delay), then

design the RO structure according to the following deployment rules:

Rule 9.1 RO elements. A NAND gate and an even number of inverters must route

in series in a ring.

Rule 9.2 Deployment area. All elements must lie within the measurement area, and

the ring routing path must pass through each MLUT within rather than outside the area.

Oscillation signal

EN

Transmission time ()Ring routing path

88

Rule 9.1 is required to satisfy that the circuit can oscillate. Rule 9.2 is required to

ensure the delay measured is exactly the delay of the measurement area.

Figure 9.3(a) shows an example of deploying a RO circuit into MLUTs. RO

elements are placed in the MLUTs to be measured and routed in series in a ring through

AD interconnects of the MLUTs. We can calculate the average delay DMLUT of the MLUTs

through the transmission time DRO of the ring routing path and the number NAD of AD

interconnects passed by the ring routing path:

DMLUT =
DRO

NAD

 =
tRO

2Nosc
tRONAD

 (9.2)

Figure 9.3 Delay monitor; (a) RO in MLUTs, (b) counter for RO.

Deploy Counter for RO:

Here we describe the design of the counter to calculate the oscillation number (Nosc
tRO).

Versus the conventional counter design composed of synchronous Flip-Flops, in this study,

we proposed a new counter circuit design that is even more adapted and simpler to

implement in the MPLD, as shown in Figure 9.3(b). The proposed counter consists of M

half-adders connecting in series. When setting the RO oscillation mode, pulses can be

outputted by a signal edge detection gate (here, we used NOR gate) by comparing the

signals of two neighbor AD interconnects on the ring routing path. The Nosc
tRO, i.e., the

number of pulses, can be calculated by the counter by performing an addition carry

operation for the pulses:

EN

(b)
Half-Adder

Point 1 signal

Point 2 signal

PulsesEdge detection pulse

Point2 Point1
(a)

MLUT MLUT MLUT MLUT MLUT

AD

EN

89

Nosc
tRO = (OM-1 O1O0)

2
 (9.3)

The procedure of implementing RO and counter for measuring the delay of MLUTs

is as follows.

Implementation Procedure

Step 1: Select measurement area (MLUTs);

Step 2: Deploy RO and counter;

Step 3: Create the truth tables for each MLUT in the area;

Step 4: Write the truth tables into corresponding MLUTs;

Step 5: Set the MPLD to logic operation mode;

Step 6: Set oscillation operation time (EN=1);

Step 7: Observe the oscillation number (counter outputs).

9.3 Simulation Results

To evaluate the proposed delay monitor method, as shown in Figure 9.4, we

configured a RO with 11 elements (a NAND and 10 inverters) and a counter with 8 half-

adders into the measurement area (MLUTs: x0y0, x1y0, x2y0, x3y0, x4y0) of the designed

MPLD with 6×6 MLUTs array. We performed a logic simulation experiment using

ModelSim.

Figure 9.4 RO and counter in MLUTs to be measured for the delay.

1: We routed the RO pass through 10 AD interconnects in the measurement area

(NAD=10).

2: We set the delay of the ATD circuit for each MLUT to 5.5ns and the overall

oscillation operation time of the RO to 2000ns (tRO).

The waveform of the RO oscillation and the counter is shown in Figure 9.5. When

setting the oscillation control signal to 1, the RO begins oscillating while the counter

counts the detected pulse until the oscillation control signal becomes 0. The pulse number

90

(RO oscillation number) counted by the counter is 18:

Figure 9.5 Simulation waveform to measure delay for MLUT.

Nosc
tRO = (00010010)2 = 18

Thus, the average delay of MLUTs in the area can be calculated by equation 9.2:

DMLUT =
tRO

2Nosc
tRONAD

 =
2000ns

2×18×10
 = 5.5̇ns

Comparing the set delay (5.5ns) of the ATD circuit with the DMLUT (5.5̇ns), the result

confirms the effectiveness of the proposed delay monitor method.

9.4 Discussion

9.4.1 Overhead of Inserting Delay Monitor

It is worth noting that the proposed delay monitor is configured in the measured

MLUTs as the truth tables without incurring logical gates and routing costs. The only

additional overhead is the time cost of configuring the truth tables of the delay monitor

into the MLUTs.

9.4.2 Work Scope of Delay Monitor

The ATD circuit, which detects address changes in the asynchronous SRAM to drive

the logic operation, is the most sensitive component to the aging-induced delays in the

MPLD. The proposed delay monitor aims to detect delays occurring in the ATD logic for

each MLUT. As for the SRAM read/write delay, existing memory delay testing methods

can be employed to detect it during the memory operation mode of the MPLD, which is

beyond the scope of this work.

9.4.3 Locating Abnormal MLUTs

The proposed delay monitor aims to periodically detect the degradation state of

MLUTs in MPLDs operating in the field. To detect degraded MLUTs in an MPLD with

an M×N array of MLUTs, as shown in Figure 9.6, the total number and location of delay

monitors are determined according to the detection method described below.

91

Figure 9.6 Delay-monitors deploying method.

(1) row detection: M delay monitors are configured in M rows (r1, ..., rM) to detect

the average delay of MLUTs in each row (dr1, ..., drM).

(2) column detection: N-1 delay monitors are configured in N columns (c1, ..., cN),

where two adjacent columns are required to configure a delay monitor. This detects the

average delay of MLUTs in two adjacent columns (dc1,c2, ..., dcN-1,cN).

(3) locating degraded MLUTs: MLUTs in the intersection region of rows with delays

in M rows and columns with delays in N rows. For example, the MLUT at row 3 and

column 3, is determined by dr3, dc2,c3, and dc3,c4.

In this setup, row detection and column detection are configured simultaneously and

work in parallel.

For achieving a certain or higher level of in-field reliability, we have examined this

issue during our research, such as how to detect the details of the delay for each degraded

MLUT. It is a challenging task that may require more complex models to build a finely

designed monitor. This will be the subject of our future research. Nevertheless, locating

abnormal MLUTs with large delays still represents a significant contribution to logic

Find degraded MLUTs

Delay Monitors in Columns (cDM)

An array of M×N MLUTs

r1

r2

r3

r4

rM

c1 c2 c3 c4 cN

Degraded

MLUT

cDM1 cDM2 cDM3 cDMN-1cDM4

dc1c2 dc2c3 dc3c4 dc4c5 dcN-1cN

Delay Monitors in Rows (rDM)

rDM1

rDM2

rDM3

rDM4

rDMM

dr1

dr2

dr3

dr4

drM

92

designers as a reference.

9.5 Conclusions

In this chapter, to detect and report the aging state of MPLD devices during field

operation, we have proposed an approach that uses a ring oscillator circuit for monitoring

the aging by periodically measuring the delay of MLUTs in the field during MPLD’s

operation.

To configure the ring oscillator circuit into MPLD, we have proposed the design and

implementation method of a ring oscillator circuit suitable for the structure of the MPLD

device and designed a counter to store the RO oscillation frequency.

The proposed method can measure the Global Delay (of all MLUTs) and the Local

Delay (of specified MLUTs) in the MPLD device.

To evaluate the proposed methods, we designed an MPLD with a 6×6 MLUTs array

and performed logic simulations by injecting delay into MPLD. From the results of the

logic simulation performed as an evaluation experiment, we confirmed that the proposed

method can effectively measure the delay of the MLUT with a very small error.

In our future work, we will make a quantitative analysis of the aging phenomena,

develop a precise simulation method as well as an on-chip test method, and explore the

methods to determine the total number and locations of delay monitors for achieving a

certain or higher level of in-field reliability.

93

Part IV: Application of MPLD

94

Chapter 10

10. A Solution to Implement Neural Networks in MPLD

With the rapid spread of artificial intelligence (AI) applications, the neural networks

(NNs) algorithm has achieved significant successes at the machine learning domains

including computer vision [70], speech recognition [71], and robotics [72]. In a practical

intelligence application, NNs usually consist of millions of parameters involving

multiply-accumulation operations, which requires high-performance computing

equipment. In addition, with the rapid spread of IoT (Internet of Things) technology in

both the industrial and consumer fields, NNs are widely applied into various edge

terminals, e.g.: battery-powered mobile devices, robots, electric vehicle etc.. In such

systems, real-time processing, low power consumption and low cost are the main

concerns with the computing device used for NNs [73]. In order to achieve high

performance and energy efficiency for AI application, hardware design for NNs is gaining

great attentions [74].

Over the past few years, the strategy of hardware design for NNs application can

mainly be classified into three types: 1) Use GPUs (Graphics Processing Units) to

accelerate NN training. 2) ASICs (Application Specific Integrated Circuits) design for

NNs. 3) FPGA-based accelerators of NNs. The GPUs apply single-instruction-multiple-

data in parallel processing that can significantly speed up the training process of

complicate NNs [75][76][77][78], however, usually accomplished with huge energy cost

(e.g.: NVIDIA A100 Tensor Core GPU, the thermal design power (TDP) is 400W [79])

that is not suitable for edge device. The ASIC design for NNs is another key strategy for

achieving high performance and energy efficiency for NNs application, such as Google

edge TPU (tensor processing unit), NVIDIA Xavier, and NovuTensor achieved good

energy efficiency [80]. However, the extremely high development cost might obstruct the

application of ASICs for IoT system. Compared to ASIC design, reconfigurable devices

such as FPGAs allow the user to reprogram the functionality and routing in field that can

provide a flexible and scalable platform for implementing the NNs application with high-

performance and low power consuming [81], however, the large area, delay and power

issues due to the programmable interconnect resources prevent the use of FPGAs, and high

cost is not friendly to the end user of edge devices.

In MPLD, functions (arithmetic logic, wiring logic) are expressed in the form of truth

tables pre-stored in the SRAMs of MLUT. Since large amount of interconnect resources

95

like in FPGA are not needed anymore, a large number of SRAMs can be integrated that

provides a chance to implement large and complex functions in a single MPLD by truth

tables, such like a LUT-based neuron activation function [82] and the LUT-based Neural

Networks (L-NNs) instead of implementing an accelerator in FPGA (due to the limited

memory size of LUT). Since the LUT-based neuron model [82] only operates memory, it

thus would work much faster and low power than a traditional accelerator which has to

perform the multiply-accumulation operations every cycle even though with acceleration

circuits. Therefore, we believe that MPLD would be a promising alternative edge AI

device for NNs application.

On the other hands, due to the special structure of MPLD, implementing a neural

network with fully-connected structure is an impossible task. There is an issue to

implement an NNs application in MPLD, it needs a newly designed NN structure to adapt

to the MPLD special structure.

In this chapter, we suggest a LUT-based neuron model to realize neuron functions

in truth table and propose a novel neural network structure named MNN (MPLD-based

Neural Network) to adapt the special connection structure of MLUTs for implementing a

neural network into MPLD. To confirm the LUT-based neuron model, we design a logic

simulation experiment in an MPLD with 6×6 MLUTs array. The simulation results

confirm the feasibility of LUT-based neuron function expression are the same as the

results of the theoretical analysis. To evaluate the effectiveness of MNN, we also perform

an experiment by training MNN with the MNIST dataset. The experimental results show

that the MNN can get almost the same accuracy and loss for MNIST data recognition

compared to a fully-connected neural network (FNN).

The main contributions of this study are as follows.

1) A LUT-based neuron model is introduced.

2) A novel network structure named MNN is proposed.

The chapter is organized as follows. Section 10.1 suggests a LUT-based neuron

model. Section 10.2 proposes an MNN (MPLD-based Neural Network) for implementing

the NNs application into an MPLD device and describes the characteristics and wiring

connection way of the proposed MNN in MPLD device. Section 10.3 performs two

experiments for confirming the LUT-based neuron model and evaluating the effectiveness

of the proposed MNN, respectively. Section 10.4 concludes the chapter.

96

10.1 LUT-based neuron model

In this section, we suggest a LUT-based neuron model to realize neuron functions

in truth tables in MPLD.

According to the operating principle of MPLD, any functions (including wiring

logic) can be written into the MLUT in the form of a truth table that provides a new

computing model for neuron activation functions in MPLD. In addition, a large number of

MLUTs make it possible to implement a complete LUT-based NN into a single MPLD

device.

Figure 10.1 shows a basic neuron of neural network (NN). The neuron function is

expressed in formula: u = ∑ wi×xi
N
i=0 +b, y = f(u), where f is an activate function for u. To

compute the value of y for u, a traditional approach has to perform multiply-accumulate

operation and activate operation in many cycles and requires large memory (buffer) to

store the weights and input/output vectors.

Figure 10.1 A NN neuron.

Figure 10.2 LUT-based neuron model in a single MLUT.

The main idea of this study is that a neuron function can be expressed in a truth table

in MPLD. Figure 10.2 (a) shows an example to implement four neurons function in one

MLUT. The correspondence between inputs x and outputs y of the neurons can be

computed by pre-learning and formed in a truth table in the MLUT between the address-

inputs and the data-outputs. Therefore, as shown in Figure 10.2 (b), when calculate the

output y for a given input pattern x, it only needs to access the memory and readout the

Inputs

Output

D12

A12

D13

A13

D14

D15

A15

A14

D8

A8

D9

A9

D10

D11

A11

A10

A3

D3

A2

D2

A1

D1

A0

D0

A7

D7

A6

D6

A5

D5

A4

D4

MLUT

MLUT (Memory)Inputs

Outputs

MLUT (Memory)Inputs Outputs

(a) Neurons in a single MLUT (b) Neurons in truth table form in a single MLUT

97

prestored results of y. It is thus much faster and low power than a traditional accelerator

which has to perform the multiply-accumulation operations every cycle even though with

acceleration circuits.

Note that here we are discussing the binarization forms of x and y. For specific

binarization methods of x and y, existing binarization methods are utilizable [83]; we will

also conduct future research to explore other binarization methods valid for MNN.

10.2 MPLD-based Neural Network (MNN)

In this section, we explain and propose an MNN (MPLD-based Neural Network) for

the aim of implementing a neural network into an MPLD device. we also describe the

characteristics of the MNN and introduce the implementation way of the MNN neurons in

MPLD.

10.2.1 A sparse neural network: MNN

A fully connected neural network (FNN) cannot be constructed directly into the

MPLD. As shown in Figure 10.3, all neurons of each layer are fully connected with the

preceding layer. For the MPLD structure, as shown in Figure 10.4, each MLUT (e.g.,

MLUT5) can only connect up to four adjacent MLUTs (e.g., MLUT1, MLUT2, MLUT6,

MLUT7), and the data outputs of other MLUTs (e.g., MLUT3, MLUT4) cannot be

connected to the MLUT (MLUT5). Therefore, it is impossible to construct a fully

connected NN into the MPLD due to such connection limits between MLUTs.

Figure 10.3 A fully connected NN. Figure 10.4 Connection limit in MPLD.

To implement a NN into MPLD, we propose a sparse neural network based on the

MPLD structure named MNN (MPLD-based Neural Network) in this study. As shown in

Figure 10.5, according to the structure of MPLD, we suggest sparsely connecting the

neural network in units of MLUTs in MPLD. We call such a sparse neural network based

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

MLUT1

MLUT2

MLUT5

MLUT3

MLUT4

MLUT6

MLUT7

98

on the structure of MPLD an MNN (MPLD-based Neural Network), and its network

structure is shown in Figure 10.6. The proposed MNN has inward gradual convergence

and association characteristics to adapt the connection structure of MLUTs. In the input

layer, the data input of each MLUT is independent of another MLUT, and the feature of

these data will be converged and associated in the middle layer.

Figure 10.5 Sparse connection in unit of
MLUT in MPLD.

Figure 10.6 Proposed MNN (MPLD-
based Neural Network)

Figure 10.7 shows an example of using MNN for a very simple image recognition

application. Where, a 4×4 bit image of O and Z is given respectively, and the vector of

each row (4bit) is applied to the address input of an MULT at the first column of the

MLUT array, respectively. Throughout the hidden layers, the feature of each row vector

will be converged inwardly and gradually, and associated until the output layer, where all

features will be extracted and recognized.

Figure 10.7 Feature extraction in MNN.

10.2.2 Implementing MNN into MPLD

Figure 10.8 shows the wiring method to connect the neurons between adjacent layers

in an MLUT array where each MLUT has 16 bits AD lines. The output of each neuron

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15
AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

MLUTs (1st column)

4×4 image

Input layer

Data

expansion

MLUTs (2nd column)

Hidden layers

MLUT (3rd column)

MLUT (4th column)

Output layer

Z or O?

V1

V2

V3

V4

v1, v2 association

v2, v3 association

v3, v4 association

v1, v2, v3 association

v2, v3, v4 association

v1, v2, v3, v4 association

v1, v2, v3, v4 are mutually independent

V1

V2

V3

V4

: MLUT block

99

function configured in an MLUT will be read out and propagated to the following adjacent

MLUT through only one AD (address-data) line. Then, the value of the address input from

the preceding MLUT will be connected to the inputs of all neurons by configuring the

branch logic (or wiring logic), e.g.: AD11 in MLUT x0y0 of Figure 10.8. Each neuron

configured in an MLUT can connect to at most 8 neurons which are configured in the

preceding adjacent MLUTs.

Figure 10.8 MNN wiring connection way in MPLD.

Top IO port: ti[19:0], to[19:0]

L
e

ft
 I

O
 p

o
rt

:
li

[4
7

:0
],

 l
o

[4
7

:0
]

R
ig

h
t

IO
 p

o
rt

:
ri

[4
7

:0
],

 r
o

[4
7

:0
]

x0y0 x2y0

x5y0

Bottom IO port: bi[19:0], bo[19:0]

x1y5 x3y5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9 AD6
AD7

AD11
AD10

AD4

AD8

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD6
AD7

AD9

AD4

AD8

AD5
AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

AD13
AD12

AD2
AD3

AD15
AD14

AD0
AD1

AD9
AD8

AD6
AD7

AD11
AD10

AD4

AD5

x4y0

x0y5

x5y5

AD13
AD12

AD15
AD14

AD9
AD8

AD11
AD10

AD9
AD8

AD11
AD10

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

x0y0

AD13
AD12

AD15
AD14

AD9
AD8

AD11
AD10

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD13
AD12

AD15
AD14

AD9
AD8

AD11
AD10

AD9
AD8

AD11
AD10

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

x0y0

AD13
AD12

AD15
AD14

AD9
AD8

AD11
AD10

AD6
AD7

AD9
AD8

AD4
AD5

AD11
AD10

AD2
AD3

AD13
AD12

AD0
AD1

AD15

AD14

logic branches

combination

100

10.3 Experimental Results

In this section, we describe the performed the experiments. First, we design an

experiment to confirm the LUT-based neuron model as described in section 10.1. Then,

we also show the experimental results to confirm the effectiveness of the proposed MNN

in the section 10.2 by the training using the MNIST dataset.

10.3.1 Confirm LUT-based Neuron Model

As shown in Figure 10.9, here a size of 4×4×4 NN is given, and each layer (Hidden-

layer1, Hidden-layer2, Output-layer1) is constructed to MLUT x0y1, MLUT x1y0, MLUT

x2y1, respectively. For simplicity in this experiment, for this NN we using the Heaviside

Step (Binary step) as an activation function to calculate each neuron:

𝑓(𝑢) = {
1 , 𝑢 ≥ 1
0 , 𝑢 < 1

𝑢 =∑𝑤𝑖 × 𝑥𝑖

𝑁

𝑖=0

+ 𝑏

Figure 10.9 A size of 4×4×4 NN constructed in 3 MLUTs.

As shown in Figure 10.10, we give the value of the weights for each layer and assign

the value of b to 0. Each layer of given weights NN is calculated to a truth table stored in

an MLUT to realize the neuron functions. Where, such as there are inputs 01010000,

through the MLUT x0y1, MLUT x1y0, MLUT x2y1, theoretically the outputs of Hidden-

layer1, Hidden-layer2, Output-layer is 0011, 1011, 0111, respectively.

D12

A12

D13

A13

D14

D15

A15

A14

D8

A8

D9

A9

D10

D1

1
A11

A10

A3

D3

A2

D2

A1

D1

A0

D0

A7

D7

A6

D6

A5

D5

A4

D4

A12

D12

A13

D13

A14

A15

D15

D14

D3

A3

D2

A2

D1

A1

D0

A0

D12

A12

D13

A13

D14

D15

A15

A14

D8

A8

D9

A9

D10

D1

1
A11

A10

A3

D3

A2

D2

A1

D1

A0

D0

A7

D7

A6

D6

A5

D5

A4

D4

MLUIT x0y1
MLUIT x2y1

Hidden-layer1 Hidden-layer2 Output-layer
MLUIT x1y0

Inputs

101

Figure 10.10 LUT-based neuron model for the size of 4×4×4 NN.

Figure 10.11 shows an performed logic simulation experiment in an MPLD with 16-

bits 6×6 MLUTs array. the experimental result shows that the operating results of the

LUT-based neuron model in MPLD are the same as the results of the above theoretical

analysis.

Figure 10.11 Experimental results for the LUT-based neuron model.

Inputs Outputs1 Outputs2 Outputs3MLUIT x0y1 MLUIT x2y1MLUIT x1y0

Inputs Outputs1 Outputs2 Outputs3MLUIT x0y1 MLUIT x2y1MLUIT x1y0

 00

1101

1110

 = = =

Hidden-layer1 Hidden-layer2 Output-layer

Hidden-layer1 Hidden-layer2 Output-layer

In
p

u
ts

H
id

d
en

-l
ay

er
1

H
id

d
en

-l
ay

er
2

102

10.3.2 Confirm Proposed MNN

In this experiment, for comparing with FNN, we first designed the same size of FNN

and the MNN. we used the MNIST dataset (60,000 handwritten number training images

and 10,000 test images.) to make training the MNN and the FNN, respectively. Figure

10.12 shows the training results in 50 epochs, the results show that the MNN is an

effective neural network that can get well accuracy and loss as same as the FNN. Figure

10.13 shows the MNN has been 150 epochs trained, and it can obtain the training accuracy

and testing accuracy up to 0.99 and 0.96, respectively.

Figure 10.12 MNN and FNN training result in 50 epochs.

Figure 10.13 MNN training result in 150 epochs.

103

10.4 Conclusions

In this chapter, we suggest a LUT-based neuron model to implement a NNs into

MPLD device. The NN neuron’s operation can be calculated into truth table form pre-

stored in MLUT of MPLD. In MPLD, due to the special interconnection structure of

MLUTs, it is difficult to construct a NN with fully connection into the MPLD. Therefore,

we proposed a novel network structure MNN (MPLD-based Neural Network) to adapt

the MPLD structure. To confirm the LUT-based neuron model, we design a logic

simulation experiment by implementing a 4×4×4 LUT-based neural network. We confirm

that the simulation results are the same as the results of the theoretical analysis. To

evaluate the effectiveness of the MNN, we also performed a recognition training

experiment using the MNIST dataset. The experimental results show the MNN is an

effective neural network which can get well accuracy and loss for MNIST data

recognition.

In our future work, we will explore binarization methods for MNNs and analyze

design approaches for MNNs that can recognize images and data of any size in MPLD.

104

Chapter 11

11. Summary

This study focuses on enhancing the reliability of IoT (internet of things) and AI

(artificial intelligence) edge devices to advance the development of an ultra-smart society.

Specifically, we concentrated on ECUs (electronic control units) employed in self-driving

vehicle systems, which demand high functional safety, and on a new reconfigurable

device, the MPLD (memory-based programmable logic device), currently under

development for IoT and AI edge computing. We proposed testing methodologies

designed to improve the reliability of these edge devices.

Initially, for automotive ECU edge devices, we proposed a technique for test point

insertion and selection for multi-cycle BIST (built-in self-test), designed to improve test

quality and reduce test time.

Multi-cycle BIST has the potential to decrease the volume of scan-in patterns. This

study meticulously examined the stuck-at-fault detection model in the time-expanded

circuit. We found that the incongruity between controllability and observability of signal

lines, exacerbated by increasing capture cycles, incites issues of fault masking and fault

detection degradation. These issues hinder the effect of multi-cycle tests on test pattern

reduction. To address this problem, we introduced a test point insertion (TPI) technique

into a multi-cycle LBIST (logic BIST) scheme aimed at decreasing the volume of scan-

in patterns for target fault coverage. The proposed TPI method involves replacing partial

scan cells with fault detection scan flip-flops (FDS-FF), also known as observation point

insertion (OPI), to enhance observability. It also incorporates self-flipping control logic

into the combinational logic, termed control point insertion (CPI), to alleviate the

controllability bias of signal lines of the circuit under test (CUT) at the intermediate

capture cycles. We further propose a TPI procedure, which includes control point

insertion and observation point pruning, to identify effective test points leading to

maximum scan-in pattern reduction. Experimental results on ISCAS89 and ITC99

benchmarks demonstrate an average pattern reduction of 24.4X, thus validating the

proposed TPI’s effectiveness in reducing the test application time of power-on self-test

(POST). Future work aims to implement the proposed test point selection algorithm in an

industrial design to evaluate the effectiveness of the multi-cycle LBIST scheme on

commercial automotive ECUs.

105

Subsequently, to ensure the reliability of MPLD devices, we proposed a high-quality

interconnect defect test method to improve the reliability during the manufacturing

process, and an aging monitoring technique for field reliability.

The proposed interconnect defect test method can identify stuck-at and bridge faults

at the address-data (AD) interconnects between MLUTs (multiple look-up tables) within

the MPLD device. This method also holds potential for actual field use as it can help

avoid configuring the logic into a faulty MLUT block, thereby ensuring higher reliability.

The test method consists of a configuration phase, which configures pre-generated

internal test data to create the route map in the MLUTs array for fault propagation paths,

and a logic phase, which applies pre-generated external test data to the MPLD’s external

logic output ports to excite target faults, observe faulty effects, and acquire the fault

propagation path set for fault location. This test method addresses both fault detection and

fault diagnosis in MPLDs. Our proposed test method has been validated through logic

simulation experiments on the designed MPLD with a 6×6 MLUTs array. The results

confirm its effectiveness in diagnosing the location of the injected stuck-at and bridge

faults. Future work will explore the test generation of internal and external test data to

identify other interconnect faults in the MPLD device, and consider methods such as

design for testability and built-in self-tests for the MPLD device.

The proposed aging monitoring technique aims to detect and report the aging state

of MPLD devices during field operation. The method involves periodically measuring the

delay of MLUTs (multiple look-up tables) during the operation of the MPLD devices,

using a specially designed delay monitor. This delay monitor is implemented using a ring

oscillator circuit compatible with the MPLD device structure. Furthermore, we designed

a new counter circuit, adapted to the MPLD structure, to store the ring oscillator’s

oscillation frequency for delay calculation. This method enables the measurement of both

the global delay (across all MLUTs) and the local delay (of specified MLUTs) within the

MPLD device. To evaluate the proposed methods, we designed an MPLD with a 6×6

MLUTs array and conducted logic simulations by injecting delay into the MPLD. The

logic simulation results confirmed that the proposed method can effectively measure the

delay of the MLUTs with minor error. In future work, we aim to conduct a quantitative

analysis of aging phenomena and develop a precise simulation method along with an on-

chip test method. Furthermore, we intend to explore strategies to determine the total

number and locations of delay monitors needed to achieve a specific or higher level of in-

field reliability.

106

References

[1] H. Fujiwara, Logic Testing and Design for Testability, The MIT Press, 1985.

[2] M. Michael Vai, VLSI Design, CRC press, 2000.

[3] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-

Signal VLSI Circuits, Kluwer Academic Publishers, 2000.

[4] Laung-Terng Wang, Cheng-Wen Wu, Xiaoqing Wen, VLSI Test Principles and Architectures: Design

for Testability (Systems on Silicon), Morgan Kaufmann Publishers Inc., San Francisco, CA, 2006.

[5] E.R. Hnatek. Integrated circuit quality and reliability, 2nd edition. Marcell Dekker Inc, 1995.

[6] A Charles E. Stroud, Designer’s Guide to Built-in Self-Test, Kluwer Academic Publishers, 2002.

[7] A. Krstić and K.-T. Cheng, Delay Fault Testing for VLSI Circuits, Kluwer Academic Publishers, 1998.

[8] ISO26262-5:2011, “Road vehicles - Functional Safety - Part 5: Product development at the hardware

level,” Online Browsing Platform, https://www.iso.org/obp/ui/#iso:std:iso:26262:-5:ed-1:v1:en,

accessed Jun. 18. 2023.

[9] P. Girard, N. Bicolici, and X. Wen, Power-Aware Testing and Test Strategies for Low Power Devices,

Springer, ISBN 978-1-4419-0927-5, New York, 2010.

[10] K. Ichino, T. Asakawa, S. Fukumoto, K. Iwasaki, and S. Kajihara, “Hybrid BIST using partially

rotational scan,” in Proc. ATS, 2001, pp. 379-384.

[11] S. Narayanan, R. Gupta, M. A. Breuer: "Optimal Configuring of Multiple Scan Chains", IEEE Trans.

on Comp., Sep. 1993, pp.1121-1131

[12] R. Kapur, S. Patil, T.J. Snethen, and T.W. Williams, “A weighted random pattern test generation

system,” IEEE Trans. CAD, vol. 15, no. 8, pp.1020-1025, Aug. 1996.

[13] A. Jas, C.V. Krishna, and N.A. Touba, “Weighted pseudorandom hybrid BIST,” IEEE Trans. VLSI,

vol. 12, no. 12, pp. 1277-1283, Dec. 2004.

[14] N.A. Touba and E.J. McCluskey, “Bit-fixing in pseudo-random sequences for scan BIST,” IEEE Trans.

CAD, vol. 20, no. 4, pp. 545-555, April 2001.

[15] H.-J. Wunderlich and G. Kiefer, “Bit-flipping BIST,” in Proc. ICCAD, 1996, pp. 337-343.

[16] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois, “Built-in test for circuits with

scan based on reseeding of multiple-polynomial linear feedback shift registers,” IEEE Trans. Comput.,

vol. 44, no.2, pp. 223-233, Feb. 1995.

[17] C. V. Krishna, A. Jas, and N. A. Touba, “Test Vector Encoding Using Partial LFSR Reseeding,” in

Proc. Intl. Test Conf. (ITC), Baltimore, MD, USA, Nov. 2001, pp. 885–893.

[18] I. Pomeranz, “Computation of Seeds for LFSR-Based n-Detection Test Generation,” ACM Trans. Des.

Autom. Electron. Syst., vol. 22, no. 2, pp. 29:1–29:13, Jan. 2017.

[19] J. P. Hayes and A. D. Friedman, “Test Point Placement to Simplify Fault Detection,” IEEE Trans.

107

Comput., vol. C–23, no. 7, pp. 727–735, Jul.1974.

[20] A. J. Briers and K. A. E. Totton, “Random Pattern Testability by Fast Fault Simulation,” in Proc. Intl.

Test Conf. (ITC), Washington, DC, USA, Sep. 1986, pp. 274–281.

[21] H. Vranken, F. S. Sapei, and H.-J. Wunderlich, “Impact of Test Point Insertion on Silicon Area and

Timing During Layout,” in Proc. Design, Automation, and Test in Europe Conf. (DATE), Paris, France,

Feb. 2004.

[22] O. Novak and J. Nosek, “Test-per-clock testing of the circuits with scan,” Proc. Int. On-Line Test

Workshop, 2001, pp. 90-92.

[23] S. Milewski, N. Mukherjee, J. Rajski, J. Solecki, J. Tyszer, and J. Zawada, “Full-scan LBIST with

capture-per-cycle hybrid test points”, Proc. ITC, 2017, paper 10.3.

[24] F. Zhang, D. Hwong, Y. Sun, A. Garcia, S. Alhelaly, G. Shofner, L. Winemberg, and J. Dworak,

"Putting wasted clock cycles to use: Enhancing fortuitous cell-aware fault detection with scan shift

capture,” Proc. ITC, 2016, paper 2.3.

[25] G. Mrugalski, J. Rajski, J. Solecki, J. Tyszer, and C. Wang, “Trimodal scan-based test paradigm,”

IEEE Trans. VLSI Systems, vol. 25, no. 3, pp. 1112-1125, March 2017.

[26] Y. Liu, N. Mukherjee, J. Rajski, S. M. Reddy and J. Tyszer, "Deterministic Stellar BIST for

Automotive ICs," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 39, no. 8, pp. 1699-1710, Aug. 2020, doi: 10.1109/TCAD.2019.2925353.

[27] I. Pomeranz and S. M. Reddy, "Static test compaction for scan-based designs to reduce test application

time", Proc. 7th Asian Test Symp. ATS, pp. 198-203, 1998.

[28] X. Lin and R. Thompson, "Test generation for designs with multiple clocks", Proc. Design Autom.

Conf., pp. 662-667, Jun. 2003.

[29] Kajihara, M. Matsuzono, H. Yamaguchi, Y. Sato, K. Miyase, and X. Wen, “On Test Pattern

Compaction with Multi-Cycle and Multi-Observation Scan Test,” Proc. Int’l. Symposium on Com.

and Inf. Tech. (ISCIT), Tokyo, pp. 723-726, Oct. 2010. DOI: 10.1109/ISCIT.2010.5665084

[30] Y. Huang, I. Pomeranz, S. M. Reddy and J. Rajski, “Improving the proportion of At-Speed Tests in

Scan BIST,” Int’l. Conf. on Computer Aided Design, San Jose, pp. 459-463, Nov. 2000. DOI:

10.1109/ICCAD.2000.896514

[31] E. K. Moghaddam, J. Rajski, S. M. Reddy and M. Kassab, “At-Speed Scan Test with Low Switching

Activity,” Proc. IEEE 28th VLSI Test Symposium, Santa Cruz, pp.177-182, April 2010. DOI:

10.1109/VTS.2010.5469580

[32] Y. Sato, S. Wang, T. Kato, K. Miyase and S. Kajihara, "Low Power BIST for Scan-Shift and Capture

Power," Proc. IEEE Asian Test Symposium, Niigata, pp. 173-178, 2012. DOI: 10.1109/ATS.2012.27

[33] I. Pomeranz, "Multicycle Tests with Fault Detection Test Data for Improved Logic Diagnosis," in

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, doi:

10.1109/TCAD.2021.3079146.

[34] N. Devtaprasanna, A. Gunda, P. Krishnamurthy, S. M. Reddy, and I. Pomeranz, "Methods for

108

improving transition delay fault coverage using broadside tests," in Proceedings of IEEE International

Conference on Test 2005, pp.256-265. doi: 10.1109/TEST.2005.1583983.

[35] I. Pomeranz, "Design-for-testability for multi-cycle broadside tests by holding of state variables," in

ACM Transactions on Design Automation of Electronic Systems, vol. 19, issue 2, article 19, pp 1-20.

[36] I. Pomeranz, “Enhanced Test Compaction for Multi-Cycle Broadside Tests By Using State

Complementation”, in ACM Transactions on Design Automation, November 2015, vol. 21, no. 1,

article 13.

[37] S. Wang et al., "Structure-Based Methods for Selecting Fault-Detection-Strengthened FF under Multi-

cycle Test with Sequential Observation," Proc. IEEE Asian Test Symposium, Hiroshima, pp. 209-214,

Nov. 2016. DOI: 10.1109/ATS.2016.40

[38] S. Wang, Y. Higami, H. Iwata, J. Matsushima and H. Takahashi, "Automotive Functional Safety

Assurance by POST with Sequential Observation," IEEE Design & Test Magazine. Vol.35, no.3,

pp.39-45, June 2018. DOI: 10.1109/MDAT.2018.2799801

[39] S. Wang, Y. Higami, H. Takahashi, H. Iwata, Y. Maeda and J. Matsushima, "Fault-detection-

strengthened method to enable the POST for very-large automotive MCU in compliance with

ISO26262," Proc. IEEE 23rd European Test Symposium, Bremen, pp. 1-2, 2018. DOI:

10.1109/ETS.2018.8400707

[40] S. Wang, et al., "Capture-Pattern-Control to Address the Fault Detection Degradation Problem of

Multi-Cycle Test in Logic BIST," Proc. IEEE Asian Test Symposium, Hefei, pp.155-160, 2018.

DOI:10.1109/ats.2018.00038

[41] H.T. Al-Awadihi, T. Aono, S. Wang, Y. Higami, H. Takahashi, H. Iwata, Y. Maeda, J. Matsushima,

“FF-Control Point Insertion (FF-CPI) to Overcome the Degradation of Fault Detection under Multi-

Cycle Test for POST,” IEICE Transactions on Information and Systems, 2020, Vol. E103.D, No. 11,

pp. 2289-2301, DOI:10.1587/transinf.2019EDP7235.

[42] P. K. Datla Jagannadha et al., “Special session: In-System-Test (IST) Architecture for NVIDIA Drive-

AGX Platforms,” In IEEE 37th VLSI Test Symposium (VTS), Monterey, CA, 1–8. 2019.

https://doi.org/10.1109/VTS.2019.8758636

[43]] G. Mrugalski, J. Rajski, J. Tyszer, and B. Włodarczak, “X-Masking for In-System deterministic test,”

In IEEE European Test Symposium (ETS), Barcelona, 1–6. 2022.

https://doi.org/10.1109/ETS54262.2022.9810407

[44] A. Rupani, D. Pandey and G. Sujediya, “Review and Study of FPGA Implementation of Internet of

Things,” Int. J. of Sci. Technol. & Eng., Vol. 3, Issue. 02, August 2016.

[45] Nithin M.R, Raisa Basheer and Sreela Mohan “Advanced Driver Assistance System using FPGA,”

QuEST Global Corp., May 2017.

[46] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie and X. Zhou, “DLAU: A Scalable Deep Learning Accelerator

Unit on FPGA,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Syst., vol. 36, no.

3, pp. 513-517, March 2017.

[47] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” in EEE Transactions on

https://doi.org/10.1109/VTS.2019.8758636
https://doi.org/10.1109/ETS54262.2022.9810407

109

Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 203-215, Feb. 2007.

[48] T. Tuan and B. Lai, "Leakage power analysis of a 90nm FPGA," Proceedings of the IEEE 2003

Custom Integrated Circuits Conference, 2003., 2003, pp. 57-60.

[49] TAIYO YUDEN CO LTD, “Reconfigurable semiconductor device”, Japan Patent JP2016208426A,

Dec. 08, 2016.

[50] H. Puchner, L. Hinh, “NBTI reliability analysis for a 90nm CMOS technology,” in 30th Eur. Solid-

State Circuits Conf., Sept. 2004, pp.257-260.

[51] F. Chen, M. Shinosky, “Addressing Cu/Low-k Dielectric TDDBReliability Challenges for Advanced

CMOS Technologies,” IEEE Trans. on Electron Devices, vol.56, no.1, pp.2-12, Jan. 2009.

[52] D. Rossi, “The Effects of Ageing on the Reliability and Performance of Integrated Circuits,” in Ageing

of Integrated Circuits: Causes, Effects and Mitigation Techniques, B. Halak, Ed., Springer

International Publishing, 2020, pp. 35-64.

[53] S. Sapatnekar, “What happens when circuits grow old: Aging issues in CMOS design,” in 2013 Int.

Symp. on VLSI Technol., Syst. and Appl. (VLSI-TSA), 2013, pp. 1-2.

[54] M.S. Mispan (et al.), “Ageing Mitigation Techniques for SRAM Memories,” in Ageing of Integrated

Circuits: Causes, Effects and Mitigation Techniques, B. Halak, Ed., Springer International Publishing,

2020, pp. 91-111.

[55] T. Q. Bui, L. D. Pham, H. M. Nguyen, V. T. Nguyen, T. C. Le, and T. Hoang, “An Effective

Architecture of Memory Built-In Self-Test for Wide Range of SRAM,” in 2016 Int. Conf. Adv.

Comput. Appl., pp. 121–124, 2016, doi: 10.1109/ACOMP.2016.026.

[56] A. Sharma and V. Ravi, “Built in self-test scheme for SRAM memories,” in 2016 Int. Conf. Adv.

Comput. Commun. Informatics, pp. 1266–1270, 2016, doi: 10.1109/ICACCI.2016.7732220

[57] S. Wang, Y. Higami, H. Takahashi, M. Sato, M. Katsu, and S. Sekiguchi, “Testing of Interconnect

Defects in Memory Based Reconfigurable Logic Device (MRLD),” in 2017 IEEE 26th Asian Test

Symp., pp. 17–22, 2017.

[58] S. Wang et al., “Test Method for the Bridge Interconnect Faults in Memory Based Reconfigurable-

Logic-Device (MRLD) Considering the Place-and-Route,” in 33th Int. Tech. Conf. Circuits/Syst.,

Comput. Commun., 2018.

[59] W. K. Huang, X. T. Chen, and F. Lombardi, “On the diagnosis of programmable interconnect systems:

Theory and application,” in Proc. 14th VLSI Test Symp., pp. 204–209, 1996, doi:

10.1109/VTEST.1996.510859

[60] D. Das and N. A. Touba, “A low cost approach for detecting, locating, and avoiding interconnect faults

in FPGA-based reconfigurable systems,” in Proc. Twelfth Int. Conf. VLSI Des. (Cat. No.PR00013),

pp. 266–269, 1999, doi: 10.1109/ICVD.1999.745159.

[61] T. Inoue, S. Miyazaki, and H. Fujiwara, “Universal fault diagnosis for lookup table FPGAs,” IEEE

Des. Test Comput., vol. 15, no. 1, pp. 39– 44, 1998, doi: 10.1109/54.655181.

[62] Y. Sato, Seiji Kajihara, Y. Miura, T. Yoneda, S. Ohtake, M. Inoue, H. Fujiwara, “A Circuit Failure

110

Prediction Mechanism (DART) for High Field Reliability,” in 8th IEEE Int. Conf. on ASIC, Oct. 2009,

pp. 581-584.

[63] M.S. Mispan (et al.), “Ageing Mitigation Techniques for SRAM Memories,” in Ageing of Integrated

Circuits: Causes, Effects and Mitigation Techniques, B. Halak, Ed., Springer International Publishing,

2020, pp. 91-111.

[64] Y. Tsugita, K.Ueno, T. Hirose, T. Asai, Y. Amemiya, “An on-chip PVT compensation technique with

current monitoring circuit for low-voltage CMOS digital LSIs,” IEICE Trans. on Electronics, vol. 93 ,

no. 6, pp. 835-841, 2010.

[65] M. Bhushan, A. Gattiker, M. B. Ketchen and K. K. Das, “Ring oscillators for CMOS process tuning

and variability control,” IEEE Trans. on Semicond. Manuf., vol. 19, no. 1, pp. 10-18, Feb. 2006.

[66] Poki Chen, Chun-Chi Chen, Chin-Chung Tsai and Wen-Fu Lu, “A time-to-digital-converter-based

CMOS smart temperature sensor,” IEEE J. of Solid-State Circuits, vol. 40, no. 8, pp. 1642-1648, Aug.

2005.

[67] S. Kajihara, Y. Miyake, Y. Sato and Y. Miura, “An On-Chip Digital Environment Monitor for Field

Test,” in 2014 IEEE 23rd Asian Test Symp., Nov. 2014, pp. 254-257.

[68] Y. Miyake, Y. Sato, S. Kajihara and Y. Miura, “Temperature and Voltage Measurement for Field Test

Using an Aging-Tolerant Monitor,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol.

24, no. 11, pp. 3282-3295, Nov. 2016.

[69] Y. Miyake, Y. Sato and S. Kajihara, “On-Chip Delay Measurement for In-Field Test of FPGAs,” in

2019 IEEE 24th Pacific Rim Int. Symp. on Dependable Computing (PRDC), Kyoto, Japan, Dec. 2019,

pp. 130-1307.

[70] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.

[71] T. Ochiai, S. Watanabe, S. Katagiri, T. Hori, J. Hershey, “Speaker Adaptation for Multichannel End-

to-End Speech Recognition,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing

(ICASSP), pp. 6707-6711, 2018.

[72] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, D. Quillen, “Learning hand-eye coordination for robotic

grasping with deep learning and large-scale data collection,” Int. J. Robot. Res., vol. 37, no. 4-5, pp.

421-436, Apr. 2018.

[73] A. Wheeldon, R. Shafik, T. Rahman, J. Lei, A. Yakovlev, and O.-C. Granmo, “Learning automata

based energy-efficient AI hardware design for IoT applications,” Philos. Trans. R. Soc. A Math. Phys.

Eng. Sci., vol. 378, no. 2182, p. 20190593, Oct. 2020.

[74] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of two decades of progress,”

Neurocomputing, vol. 74, no. 1, pp. 239-255, 2010.

[75] Z. Fan, F. Qiu, A. Kaufman, S. Yoakum-Stove, “GPU Cluster for High Performance Computing,” in

Proc. ACM/IEEE Conf. on Supercomputing, Nov. 2004.

[76] E. Mizell, R. Biery, Introduction to GPUs for Data Analytics Advances and Applications for

Accelerated Computing, O’Reilly, 2017.

111

[77] N. Singh, S. P. Panda, “Enhancing the Proficiency of Artificial Neural Network on Prediction with

GPU,” in Int. Conf. on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon),

Oct. 2019.

[78] Y. Kim, H. Choi, J. Lee, J. Kim, H. Jei, H. Roh, “Efficient Large-Scale Deep Learning Framework for

Heterogeneous Multi-GPU Cluster,” in 2019 IEEE 4th Int. Workshops on Foundations and

Applications of Self* Systems (FAS*W), Jun. 2019.

[79] NVIDIA, “NVIDIA A100 Tensor core GPU,” NVIDIA, 2020.

[80] Y Hui, J Lien, X Lu, “Three-Dimensional Characterization on Edge AI Processors with Object

Detection Workloads,” in Int. Conf. for High Performance Computing, Networking, Storage, and

Analysis, Nov. 2019.

[81] K. Guo, S. Zeng, J. Yu, Y. Wang, H. Yang, “A Survey of FPGA-based Neural Network Inference

Accelerators,” J ACM Trans. Reconfigurable Technol. Syst., Vol. 12, No. 1, Article No.: 1, pp. 1-26,

Apr. 2019.

[82] F. Piazza, A. Uncini and M. Zenobi, “Neural networks with digital LUT activation functions,” Proc.

Int. Jt. Conf. Neural Networks (IJCNN), vol. 2, pp. 1401-1404, 1993.

[83] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe, “Binary neural

networks: A survey. Pattern Recognition”, in Pattern Recognition, 2020.

112

List of Publication

Journal Publications

1. Senling Wang, Xihong Zhou, Yoshinobu Higami, Hiroshi Takahashi, Hiroyuki Iwata, Yoichi Maeda,

Jun Matsushima, “Test Point Insertion for Multi-Cycle Power-On Self-Test,” ACM Transactions on

Design Automation of Electronic Systems (ACM TODES), Vol. 28, No. 3, pp. 1-21, May 2023.

International Conferences Publications

1. Xihong Zhou, Senling Wang, Yoshinobu Higami, Hiroshi Takahashi, Mitsunori Katsu, Shoichi

Sekiguchi, “MNN: A Solution to Implement Neural Networks into a Memory-based Reconfigurable

Logic Device (MRLD),” in 36th International Technical Conference on Circuits, Systems, Computers,

and Communications (ITC-CSCC), Jun. 2021.

2. Xihong Zhou, Senling Wang, Yoshinobu Higami, Hiroshi Takahashi, “Aging Monitoring for Memory-

based Reconfigurable Logic Device (MRLD),” in 35th International Technical Conference on

Circuits, Systems, Computers, and Communications (ITC-CSCC), Jul. 2020.

International Conferences Presentations

1. Xihong Zhou, “Study on the High Reliability of MPLD (Memory-based Programmable Logic

Device),” in Asian Test Symposium, Ph.D. Thesis Competition, Semi-Final of 2023 TTTC’s E. J.

McCluskey Doctoral Thesis Award (ATS Doctoral Thesis Award), Nov. 2022.

2. Xihong Zhou, Senling Wang, Yoshinobu Higami, Hiroshi Takahashi, “Diagnosis for Interconnect

Faults in Memory-based Reconfigurable Logic Device,” in 22nd IEEE Workshop on RTL and High

Level Testing (WRTLT), Nov. 2021.

National Conferences

1. Xihong ZHOU, Senling WANG, Yoshinobu HIGAMI, Hiroshi TAKAHASHI, Masayuki SATO,

Mitsunori KATSU, Shoichi SEKIGUCHI, “Implementing Neural Networks on Memory-based

Reconfigurable Logic Device (MRLD),” in 30th Microelectronics Symposium (MES), Sep. 2020.

2. 周 細紅, 王 森レイ, 樋上 喜信, 高橋 寛, “メモリベース論理再構成デバイス(MRLD)にお

ける劣化状態検知のためのリングオシレータ実装,” 第 34 回エレクトロニクス実装学会春

季講演大会講演集 (JIEP), Mar. 2020.

3. 青野 智己, 中岡 典弘, 周 細紅, 王 森レイ, 樋上 喜信, 高橋 寛, 岩田 浩幸, 前田 洋一,

松嶋 潤, “マルチサイクルテストにおける故障検出強化のためのテストポイント挿入法,”

電子情報通信学会技術研究報告 (IEICE-DC), vol. 119, no. 420, pp. 19-24, Feb. 2020.

4. 阿部 寛人, 畝山 勇一朗, 中岡 典弘, 渡辺 友希, 福本 真也, 森田 航平, 中本 裕大, 周 細

紅, 河野 靖, 木下 浩二, 一色 正晴, 二宮 崇, 田村 晃裕, 甲斐 博, 高橋 寛, 王 森レイ,

“Raspberry Pi を用いた画像処理と CNN による微小害虫の計数システムの構築,” 令和元年

度電気関係学会四国支部連合大会論文集 (CD-ROM) (SJCIEE), 2019.

5. 周 細紅, 王 森レイ, 高橋 寛, “サウンドコード技術を利用した電気錠システムの開発,” 電

気関係学会四国支部連合大会 (SJCIEE), 2018.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Background
	1.2 Objective
	1.2.1 Reliability Enhancement for Automotive ECU Edge Devices
	1.2.2 Reliability Enhancement for MPLD Edge Devices

	1.3 Structure of this Dissertation

	2. Preliminary
	2.1 Integrated Circuit
	2.1.1 Digital Logic Circuit
	2.1.2 Combinational and Sequential Logic Circuit
	2.1.3 Latch and Flip-flop
	2.1.4 Register
	2.1.5 SRAM
	2.1.6 Transistor

	2.2 Integrated Circuit Reliability
	2.3 Integrated Circuit Test
	2.3.1 Purpose of Test
	2.3.2 Test Principle

	2.4 Fault Models
	2.4.1 Stuck-at Fault Model
	2.4.2 Bridging Fault Model
	2.4.3 Delay Fault Model

	2.5 Test Generation
	2.5.1 Logic Simulation
	2.5.2 Fault Simulation
	2.5.3 Fault Coverage

	2.6 Design for Testability
	2.6.1 Scan Design
	2.6.2 Logic Built-In Self-Test
	2.6.3 Test Point Insertion

	3. Multi-Cycle Test Scheme
	3.1 Scan BIST
	3.2 Multi-cycle BIST
	3.3 The Problems of Multi-cycle BIST
	3.3.1 Fault Masking
	3.3.2 Fault Detection Degradation Problem (FDD)

	4. Fault Detection Model in Multi-Cycle BIST
	5. Test Point Insertion and Selection for Multi-Cycle BIST
	5.1 Test Points for Multi-Cycle BIST
	5.1.1 Observation Point: FDS-FF
	5.1.2 Control Point: Self-Flipping CP

	5.2 TP Selection for Multi-Cycle BIST
	5.2.1 A New Evaluation Metrics for CP Selection
	5.2.2 TP Selection Procedure for Multi-cycle BIST

	5.3 Experimental Results
	5.3.1 Evaluation of the Efficiency of the Multi-Cycle Test
	5.3.2 Evaluation of the Efficiency of the CPI and the OPI

	5.4 Conclusions

	6. Memory-based Programmable Logic Device (MPLD)
	6.1 MPLD Architecture
	6.1.1 MPLD Structure: MLUTs (Multiple Look-up Tables) Array
	6.1.2 MPLD Memory Operation Mode
	6.1.3 MPLD Logic Operation Mode

	6.2 MPLD Work Principle

	7. Reliability issue in MPLD
	7.1 Manufacturing-Defects-caused Reliability Issue
	7.2 Field-Aging-caused Reliability Issue
	7.3 Conclusions

	8. Interconnect Defect Test for MPLD
	8.1 Interconnect Fault Models in MPLD
	8.1.1 Stuck-at Interconnect Faults
	8.1.2 Bridge Interconnect Faults

	8.2 Test Method for Interconnect Faults
	8.2.1 Test Strategy for Fault Detection and Location
	8.2.2 Test Generation

	8.3 Simulation Results
	8.3.1 Verification of Testing to Stuck-at Interconnect Faults
	8.3.2 Verification of Testing to Bridge Interconnect Faults

	8.4 Discussion
	8.4.1 Test Effectivity for Interconnect Faults
	8.4.2 Time Complexity of the Test Procedure
	8.4.3 Test Availability for Multiple Interconnect Fault

	8.5 Conclusions

	9. Aging monitoring for MPLD
	9.1 Delay-Monitoring technologies
	9.2 Delay Monitoring in MPLD
	9.2.1 Ring Oscillator (RO)
	9.2.2 Delay Monitor Design Using RO

	9.3 Simulation Results
	9.4 Discussion
	9.4.1 Overhead of Inserting Delay Monitor
	9.4.2 Work Scope of Delay Monitor
	9.4.3 Locating Abnormal MLUTs

	9.5 Conclusions

	10. A Solution to Implement Neural Networks in MPLD
	10.1 LUT-based neuron model
	10.2 MPLD-based Neural Network (MNN)
	10.2.1 A sparse neural network: MNN
	10.2.2 Implementing MNN into MPLD

	10.3 Experimental Results
	10.3.1 Confirm LUT-based Neuron Model
	10.3.2 Confirm Proposed MNN

	10.4 Conclusions

	11. Summary
	References
	List of Publication

